【題目】直角坐標(biāo)系中已知點P(1,2),在x軸上找一點A,使△AOP為等腰三角形,這樣的點A共有____個.
【答案】4
【解析】
要使△AOP為等腰三角形,只需分兩種情況考慮:OP當(dāng)?shù)走吇?/span>OP當(dāng)腰,當(dāng)OP是底邊時,則點A即為OP的垂直平分線和x軸的交點;當(dāng)OP是腰時,則點A即為分別以O、P為圓心,以OP為半徑的圓和x軸的交點(點O除外),從而得出答案.
解:(1)若AO作為腰時,有兩種情況,當(dāng)P是頂角頂點時,A是以P為圓心,以OP為半徑的圓與x軸的交點,共有1個,
當(dāng)O是頂角頂點時,A是以O為圓心,以OP為半徑的圓與x軸的交點,有2個;
(2)若OP是底邊時,A是OP的中垂線與x軸的交點,有1個.
以上4個交點沒有重合的.
故符合條件的點有4個.
故答案為:4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,我國某大使館內(nèi)有一單杠支架,支架高2.8 m,在大使辦公樓前豎立著高28 m的旗桿,旗桿底部離大使辦公樓墻根的垂直距離為17 m,在一個陽光燦爛的某一時刻,單杠支架的影長為2.24 m,大使辦公室窗口離地面5 m,問此刻中華人民共和國國旗的影子是否能達到大使辦公室的窗口?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點B,F,C,E在一條直線上,AB=DE,AB∥DE,∠A=∠D.
(1)求證:△ABC≌△DEF;(2)AC和DF存在怎樣的關(guān)系?(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個粒子在第一象限內(nèi)及x軸,y軸上運動,第1分鐘從原點運動到,第2分鐘從運動到,而后它接著按圖中箭頭所示的與x軸y軸平行的方向來回運動,且每分鐘移動1個長度單位.在第2019分鐘時,這個粒子所在位置的坐標(biāo)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC在平面直角坐標(biāo)系中的位置如圖所示,將△ABC向右平移5個單位長度,再向下平移3個單位長度得到△A1B1C1.(圖中每個小方格邊長均為1個單位長度)
(1)在圖中畫出平移后的△A1B1C1;
(2)直接寫出△A1B1C1各頂點的坐標(biāo).
A1______,B1______,C1______.
(3)在x軸上找到一點M,當(dāng)AM+A1M取最小值時,M點的坐標(biāo)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列計算過程,猜想立方根.
=1 =8 =27 =64 =125 =216 =343 =512 =729
(1)小明是這樣試求出19683的立方根的,先估計19683的立方根的個位數(shù), 猜想它的個位數(shù)為 , 又由<19000< ,猜想19683的立方根十位數(shù)為 ,驗證得19683的立方根是 .
(2)請你根據(jù)(1)中小明的方法,完成如下填空:
① = ; ②= ;③= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB交x軸于點A(a,0),交y軸于點B(0,b),且a、b滿足.
(1)點A的坐標(biāo)為 ;點B的坐標(biāo)為 ;
(2)如圖1,若點C的坐標(biāo)為(-3,-2),且BE⊥AC于點E,OD⊥OC交BE延長線于D,試求點D的坐標(biāo);
(3)如圖2,M、N分別為OA、OB邊上的點,OM=ON,OP⊥AN交AB于點P,過點P 作PG⊥BM,交AN的延長線于點G,請寫出線段AG、OP與PG之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年8月1日,鄭州市物價局召開居民使用天然氣銷售價格新聞通氣會,宣布鄭州市天然氣價格調(diào)整方案如下:
一戶居民一個月天然氣用量的范圍 | 天然氣價格(單位:元/立方米) |
不超過50立方米 | 2.56 |
超過50立方米的部分 | 3.33 |
(1)若張老師家9月份使用天然氣36立方米,則需繳納天然氣費為______元;
(2)若張老師家10月份使用天然氣立方米,則需繳納的天然氣費為_______元;
(3)依此方案計算,若張老師家11月份實際繳納天然氣費201.26元,求張老師家11月份使用天然氣多少立方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】仔細想一想,完成下面的說理過程.
如圖,已知AB∥CD,∠B=∠D
求證:∠E=∠DFE.
證明:∵AB∥CD (已知 ),
∴∠B+∠ =180°( )
又∵∠B=∠D(已知 )
∴∠D +∠BCD=180°( )
∴ ( )
∴∠E=∠DFE( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com