5.如圖,在Rt△ABC中,∠ACB=90°,AC=BC=3,點D在邊AC上,且AD=2CD,DE⊥AB,垂足為點E,聯(lián)結(jié)CE,求:
(1)線段BE的長;
(2)∠ECB的余切值.

分析 (1)由等腰直角三角形的性質(zhì)得出∠A=∠B=45°,由勾股定理求出AB=3$\sqrt{2}$,求出∠ADE=∠A=45°,由三角函數(shù)得出AE=$\sqrt{2}$,即可得出BE的長;
(2)過點E作EH⊥BC,垂足為點H,由三角函數(shù)求出EH=BH=BE•cos45°=2,得出CH=1,在Rt△CHE中,由三角函數(shù)求出cot∠ECB=$\frac{CH}{EH}$=$\frac{1}{2}$即可.

解答 解:(1)∵AD=2CD,AC=3,
∴AD=2,
∵在Rt△ABC中,∠ACB=90°,AC=BC=3,
∴∠A=∠B=45°,AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=$\sqrt{{3}^{2}+{3}^{2}}$=3$\sqrt{2}$,
∵DE⊥AB,
∴∠AED=90°,∠ADE=∠A=45°,
∴AE=AD•cos45°=2×$\frac{\sqrt{2}}{2}$=$\sqrt{2}$,
∴BE=AB-AE=3$\sqrt{2}$-$\sqrt{2}$=2$\sqrt{2}$,
即線段BE的長為2$\sqrt{2}$;
(2)過點E作EH⊥BC,垂足為點H,如圖所示:
∵在Rt△BEH中,∠EHB=90°,∠B=45°,
∴EH=BH=BE•cos45°=2$\sqrt{2}$×$\frac{\sqrt{2}}{2}$=2,
∵BC=3,
∴CH=1,
在Rt△CHE中,cot∠ECB=$\frac{CH}{EH}$=$\frac{1}{2}$,
即∠ECB的余切值為$\frac{1}{2}$.

點評 本題考查了解直角三角形、勾股定理、等腰直角三角形的性質(zhì)、三角函數(shù);熟練掌握等腰直角三角形的性質(zhì),通過作輔助線求出CH是解決問題(2)的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.荔枝是深圳的特色水果,小明的媽媽先購買了2千克桂味和3千克糯米糍,共花費90元;后又購買了1千克桂味和2千克糯米糍,共花費55元.(每次兩種荔枝的售價都不變)
(1)求桂味和糯米糍的售價分別是每千克多少元;
(2)如果還需購買兩種荔枝共12千克,要求糯米糍的數(shù)量不少于桂味數(shù)量的2倍,請設(shè)計一種購買方案,使所需總費用最低.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

16.已知邊長為4的正方形ABCD,點E、F分別在CA、AC的延長線上,且∠BED=∠BFD=45°,那么四邊形EBFD的面積是16+16$\sqrt{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

13.今年官渡區(qū)近7千名考生參加中考,為了解本次中考的數(shù)學(xué)成績,從中抽取500名考生的數(shù)學(xué)成績進(jìn)行統(tǒng)計分析,本次抽樣調(diào)查中的樣本容量是500.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.解下列方程:
(1)$\frac{2}{x}$=$\frac{3}{x+1}$
(2)$\frac{3-x}{x-4}$-$\frac{1}{4-x}$=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

10.若式子$\sqrt{k-1}$+(k-1)2有意義,則一次函數(shù)y=(k-1)x+1-k的圖象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

17.如果一個多邊形的每一個內(nèi)角都是108°,那么這個多邊形是( 。
A.四邊形B.五邊形C.六邊形D.七邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

14.下列運算正確的是( 。
A.a•a2=a2B.(ab)3=ab3C.a8÷a2=a4D.(a23=a6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在?ABCD中,∠BAC=90°,對角線AC,BD相交于點P,以AB為直徑的⊙O分別交BC,BD于點E,Q,連接EP并延長交AD于點F.
(1)求證:EF是⊙O的切線;
(2)求證:EF2=4BP•QP.

查看答案和解析>>

同步練習(xí)冊答案