x2y3滿足方程mx4y8,則m的值是________

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:江蘇省吳江市青云中學(xué)2010-2011學(xué)年八年級上學(xué)期期末考試數(shù)學(xué)試題 題型:044

如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)O是BC的中點(diǎn),D為AB上一動點(diǎn),延長DO到E,且OF=OD,連結(jié)CE.

(l)如圖,若D為AB的中點(diǎn),請判斷四邊形EDAC的形狀,并說明理由;

(2)如圖,若∠A=60°,∠BOD=30°,四邊形EDAC是等腰梯形嗎?請說明理由;

(3)若AC=15,AB=25,請問:在下圖中當(dāng)DE與AB滿足什么位置關(guān)系時,四邊形的EDAC周長最。坎⑶蟪鏊倪呅蔚腅DAC的最小周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:廣東省汕頭市龍湖區(qū)2012年中考模擬考試數(shù)學(xué)試題 題型:044

先閱讀下列材料,再解答后面的問題

材料:一般地,n個相同的因數(shù)a相乘:.如23=8,此時,3叫做以2為底8的對數(shù),記為log28(即log28=3).一般地,若an=b(b>0且a≠1,b>0),則n叫做以a為底b的對數(shù),記為logab(即logab=n).如34=81,則4叫做以3為底81的對數(shù),記為log381(即log381=4).

問題:(1)計算以下各對數(shù)的值:log24=________log216=________log264=________.

(2)觀察(1)中三數(shù)4、16、64之間滿足怎樣的關(guān)系式?log24、log216、log264之間又滿足怎樣的關(guān)系式?

(3)由(2)的結(jié)果,你能歸納出一個一般性的結(jié)論嗎?

logaM+logaN=________.(a>0且a≠1,M>0,N>0)

根據(jù)冪的運(yùn)算法則:an·am=an+m以及對數(shù)的含義證明上述結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年四川省攀枝花市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:044

先閱讀下列材料,再解答后面的問題

材料:一般地,n個相同的因數(shù)a相乘:.如23=8,此時,3叫做以2為底8的對數(shù),記為log28(即log28=3).一般地,若an=b(a>0且a≠1,b>0),則n叫做以a為底b的對數(shù),記為logab(即logab=n).如34=81,則4叫做以3為底81的對數(shù),記為log381(即log381=4).

問題:(1)計算以下各對數(shù)的值:

log24=________  log216=________  log264=________.

(2)觀察(1)中三數(shù)4、16、64之間滿足怎樣的關(guān)系式?log24、log216、log264之間又滿足怎樣的關(guān)系式?

(3)由(2)的結(jié)果,你能歸納出一個一般性的結(jié)論嗎?

logaM+logaN=________(a>0且a≠1,M>0,N>0)

根據(jù)冪的運(yùn)算法則:an·am=an+m以及對數(shù)的含義證明上述結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江蘇省南京市鼓樓區(qū)中考二模數(shù)學(xué)試卷(帶解析) 題型:解答題

【提出問題】
如圖①,在梯形ABCD中,AD//BC,AC、BD交于點(diǎn)E,∠BEC=n°,若AD=a,BC=b,則梯形ABCD的面積最大是多少?
【探究過程】
小明提出:可以從特殊情況開始探究,如圖②,在梯形ABCD中,AD//BC,AC⊥BD,若AD=3,BC=7,則梯形ABCD的面積最大是多少?
如圖③,過點(diǎn)D做DE//AC交BC的延長線于點(diǎn)E,那么梯形ABCD的面積就等于△DBE的面積,求梯形ABCD的面積最大值就是求△DBE的面積最大值.如果設(shè)AC=x,BD=y(tǒng),那么S△DBE=xy.
以下是幾位同學(xué)的對話:
A同學(xué):因?yàn)閥=,所以S△DBE=x,求這個函數(shù)的最大值即可.
B同學(xué):我們知道x2+y2=100,借助完全平方公式可求S△DBE=xy的最大值
C同學(xué):△DBE是直角三角形,底BE=10,只要高最大,S△DBE就最大,我們先將所有滿足BE=10的直角△DBE都找出來,然后在其中尋找高最大的△DBE即可.

(1)請選擇A同學(xué)或者B同學(xué)的方法,完成解題過程.
(2)請幫C同學(xué)在圖③中畫出所有滿足條件的點(diǎn)D,并標(biāo)出使△DBE面積最大的點(diǎn)D1.(保留作圖痕跡,可適當(dāng)說明畫圖過程)
【解決問題】
根據(jù)對特殊情況的探究經(jīng)驗(yàn),請在圖①中畫出面積最大的梯形ABCD的頂點(diǎn)D1,并直接寫出梯形ABCD面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案