已知拋物線y=2x2+4x+k-1與x軸有兩個交點,求k的取值范圍.

解:由題意得△=16-8(k-1)>0,
∴k<3.
分析:由于拋物線y=2x2+4x+k-1與x軸有兩個交點,那么它的判別式應該是一個正數(shù),由此可以得到關于k的不等式,解不等式即可.
點評:此題比較簡單,利用判別式與拋物線與x軸的交點情況即可確定k的取值范圍.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知拋物線y=2x2-4mx+m2
(1)求證:當m為非零實數(shù)時,拋物線與x軸總有兩個不同的交點;
(2)若拋物線與x軸的交點為A、B,頂點為C,且S△ABC=4
2
,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

6、已知拋物線y=2x2-4x+m的頂點在x軸上,則m的值是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

16、已知拋物線y=2x2-bx+3的圖象經(jīng)過點(1,4),則b=
1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線y=2x2+mx-6與x軸相交時兩交點間的線段長為4,則m的值是
±4
±4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線y=2x2+bx+c的頂點坐標為(2,-3),那么b=
-8
-8
,c=
5
5

查看答案和解析>>

同步練習冊答案