精英家教網 > 初中數學 > 題目詳情
如圖,△ABC為圓O的內接三角形,BD為⊙O的直徑,AB=AC,AD交BC于E,AE=2,ED=4.
(1)求證:△ABE∽△ADB,并求AB的長;
(2)延長DB到F,使BF=BO,連接FA,那么直線FA與⊙O相切嗎?為什么?

【答案】分析:(1)易得△ABE與△ADB的三個內角相等,故△ABE∽△ADB,進而可得;代入數據可得答案.
(2)連接OA,根據勾股定理可得BF=BO=AB;易得∠OAF=90°,故可得直線FA與⊙O相切.
解答:(1)證明:∵AB=AC,
∴∠ABC=∠C.
∵∠C=∠D,
∴∠ABC=∠D.
又∵∠BAE=∠DAB,
∴△ABE∽△ADB,(3分)
,
∴AB2=AD•AE=(AE+ED)•AE=(2+4)×2=12,
∴AB=2.(5分)

(2)解:直線FA與⊙O相切.(6分)
理由如下:
連接OA,
∵BD為⊙O的直徑,
∴∠BAD=90°,
∴BD=,
∴BF=BO=
∵AB=2
∴BF=BO=AB,
∴∠OAF=90°.
∴直線FA與⊙O相切.(8分)
點評:本題考查常見的幾何題型,包括切線的判定及相似三角形證明與性質的運用,要求學生掌握常見的解題方法,并能結合圖形選擇簡單的方法解題.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,△ABC為圓O的內接三角形,BD為⊙O的直徑,AB=AC,AD交BC于E,AE=2,ED=4.
(1)求證:△ABE∽△ADB,并求AB的長;
(2)延長DB到F,使BF=BO,連接FA,那么直線FA與⊙O相切嗎?為什么?

查看答案和解析>>

科目:初中數學 來源:第3章《圓》?碱}集(22):3.5 直線和圓的位置關系(解析版) 題型:解答題

如圖,△ABC為圓O的內接三角形,BD為⊙O的直徑,AB=AC,AD交BC于E,AE=2,ED=4.
(1)求證:△ABE∽△ADB,并求AB的長;
(2)延長DB到F,使BF=BO,連接FA,那么直線FA與⊙O相切嗎?為什么?

查看答案和解析>>

科目:初中數學 來源:第35章《圓(二)》常考題集(10):35.4 切線的判定(解析版) 題型:解答題

如圖,△ABC為圓O的內接三角形,BD為⊙O的直徑,AB=AC,AD交BC于E,AE=2,ED=4.
(1)求證:△ABE∽△ADB,并求AB的長;
(2)延長DB到F,使BF=BO,連接FA,那么直線FA與⊙O相切嗎?為什么?

查看答案和解析>>

科目:初中數學 來源:第26章《圓》常考題集(28):26.5 直線與圓的位置關系(解析版) 題型:解答題

如圖,△ABC為圓O的內接三角形,BD為⊙O的直徑,AB=AC,AD交BC于E,AE=2,ED=4.
(1)求證:△ABE∽△ADB,并求AB的長;
(2)延長DB到F,使BF=BO,連接FA,那么直線FA與⊙O相切嗎?為什么?

查看答案和解析>>

同步練習冊答案