【題目】在矩形ABCD中,AB8,點(diǎn)H是直線AB邊上的一個(gè)點(diǎn),連接DH交直線CB的干點(diǎn)E,交直線AC于點(diǎn)F,連接BF

1)如圖,點(diǎn)HAB邊上,若四邊形ABCD是正方形,求證:△ADF≌△ABF

2)在(1)的條件下,若△BHF為等腰三角形,求HF的長(zhǎng);

3)如圖,若tanADH,是否存在點(diǎn)H,使得△BHF為等腰三角形?若存在,求該三角形的腰長(zhǎng);若不存在,試說(shuō)明理由.

【答案】1)詳見(jiàn)解析;(28;(3)存在,詳見(jiàn)解析.

【解析】

1)根據(jù)SAS證明三角形全等即可.

2)想辦法證明∠ADH=30°,求出AH即可解決問(wèn)題.

3)如圖②中,可以假設(shè)AH=4k,AD=3k,DH=5k,因?yàn)椤?/span>BHF是等腰三角形,∠BHF是鈍角,推出HF=BH,設(shè)BH=HF=x,構(gòu)建方程組解決問(wèn)題即可.

1)證明:如圖中,

∵四邊形ABCD是正方形,

ABAD,∠FAB=∠FAD45°,

AFAF,

∴△ADF≌△ABFSAS).

2)解:如圖中,

∵∠BHF>∠HAD

∴∠BHF是鈍角,

∵△BHF是等腰三角形,

BHFH,

∴∠HBF=∠BFH,

∵△ADF≌△ABF

∴∠ADF=∠ABF,

∵∠AHD=∠HBF+BFH,

∴∠AHD2ADH

∵∠AHD+ADH90°,

∴∠ADH30°,

AHADtan30°=,

BHHF8

3)解:如圖中,存在.理由如下:

∵四邊形ABCD是矩形,

ABCD8ABCD,∠DAH90°,

tanADH,

∴可以假設(shè)AH4k,AD3k,則DH5k,

∵△BHF是等腰三角形,∠BHF是鈍角,

HFBH,設(shè)BHHFx

AHCD,

,

AH+BH8,

4k+x8 ②,

①②可得,x(舍棄),

∴存在,該三角形的腰長(zhǎng)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】近兩年購(gòu)物的支付方式日益增多,某數(shù)學(xué)興趣小組就此進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果顯示,支付方式有:A微信.B支付寶.C銀行卡.D其他.該小組選取了某一超市一天之內(nèi)購(gòu)買(mǎi)者的支付方式進(jìn)行統(tǒng)計(jì),得到如下兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題:

1)本次調(diào)查中,一共調(diào)查了多少名購(gòu)買(mǎi)者?

2)補(bǔ)全條形統(tǒng)計(jì)圖:A微信支付方式所在扇形的圓心角為   度;

3)若該超市這一天內(nèi)有2000名購(gòu)買(mǎi)者,請(qǐng)你估計(jì)B種支付方式的購(gòu)買(mǎi)者有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等邊△ABC的邊長(zhǎng)是2,以BC邊上的高AB1為邊作等邊三角形,得到第一個(gè)等邊△AB1C1;再以等邊△AB1C1B1C1邊上的高AB2為邊作等邊三角形,得到第二個(gè)等邊△AB2C2;再以等邊△AB2C2B2C2邊上的高AB3為邊作等邊三角形,得到第三個(gè)等邊△AB3C3;…,記△B1CB2的面積為S1,B2C1B3的面積為S2,B3C2B4的面積為S3,如此下去,則Sn=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+bx+5經(jīng)過(guò)坐標(biāo)軸上A、BC三點(diǎn),連接ACtanC,5OA3OB

1)求拋物線的解析式;

2)點(diǎn)Q在第四象限的拋物線上且橫坐標(biāo)為t,連接BQy軸于點(diǎn)E,連接CQ、CB,△BCQ的面積為S,求St的函數(shù)解析式;

3)已知點(diǎn)D是拋物線的頂點(diǎn),連接CQDH所在直線是拋物線的對(duì)稱軸,連接QH,若∠BQC45°,HRx軸交拋物線于點(diǎn)RHQHR,求點(diǎn)R的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC,點(diǎn)Ay軸上,點(diǎn)Cx軸上,BCx軸,tanACO.延長(zhǎng)AC到點(diǎn)D,過(guò)點(diǎn)DDEx軸于點(diǎn)G,且DGGE,連接CE,反比例函數(shù)yk0)的圖象經(jīng)過(guò)點(diǎn)B,和CE交于點(diǎn)F,且CFFE21.若△ABE面積為6,則點(diǎn)D的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線x軸交于點(diǎn)B,與y軸交于點(diǎn)C,二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)B,C兩點(diǎn),且與x軸的負(fù)半軸交于點(diǎn)A,動(dòng)點(diǎn)D在直線BC下方的二次函數(shù)圖象上.

(1)求二次函數(shù)的表達(dá)式;

(2)如圖1,連接DC,DB,設(shè)BCD的面積為S,S的最大值;

(3)如圖2,過(guò)點(diǎn)DDMBC于點(diǎn)M,是否存在點(diǎn)D,使得CDM中的某個(gè)角恰好等于∠ABC2倍?若存在,直接寫(xiě)出點(diǎn)D的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某養(yǎng)殖場(chǎng)為了響應(yīng)黨中央的扶貧政策,今年起采用場(chǎng)內(nèi)+農(nóng)戶養(yǎng)殖模式,同時(shí)加強(qiáng)對(duì)蛋雞的科學(xué)管理,蛋雞的產(chǎn)蛋率不斷提高,三月份和五月份的產(chǎn)蛋量分別是2.5萬(wàn)kg3.6萬(wàn)kg,現(xiàn)假定該養(yǎng)殖場(chǎng)蛋雞產(chǎn)蛋量的月增長(zhǎng)率相同.

1)求該養(yǎng)殖場(chǎng)蛋雞產(chǎn)蛋量的月平均增長(zhǎng)率;

2)假定當(dāng)月產(chǎn)的雞蛋當(dāng)月在各銷(xiāo)售點(diǎn)全部銷(xiāo)售出去,且每個(gè)銷(xiāo)售點(diǎn)每月平均銷(xiāo)售量最多為0.32萬(wàn)kg.如果要完成六月份的雞蛋銷(xiāo)售任務(wù),那么該養(yǎng)殖場(chǎng)在五月份已有的銷(xiāo)售點(diǎn)的基礎(chǔ)上至少再增加多少個(gè)銷(xiāo)售點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線過(guò)點(diǎn)且與軸交于點(diǎn).把點(diǎn)向左平移2個(gè)單位,再向上平移4個(gè)單位,得到點(diǎn).過(guò)點(diǎn)的直線軸于點(diǎn)

1)求直線的解析式.

2)直線交于點(diǎn),在直線和直線上是否存在點(diǎn),使,若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

3)若有過(guò)點(diǎn)的直線與線段有公共點(diǎn)且滿足的增大而減小,設(shè)直線軸交點(diǎn)橫坐標(biāo)為,直接寫(xiě)出的取值范圍________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的直徑AB=10,弦AC=6,ACB的平分線交⊙OD,過(guò)點(diǎn)DDEABCA的延長(zhǎng)線于點(diǎn)E,連接AD,BD

(1)由ABBD,圍成的曲邊三角形的面積是 ;

(2)求證:DE是⊙O的切線;

(3)求線段DE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案