如圖8-51,在梯形ABCD中,AD∥BC,對(duì)角線AC⊥BD,且AC=12,BD=9,則此梯形的中位線長(zhǎng)是________________.

圖8-51

7.5

提示:如圖,平移對(duì)角線形成直角三角形,且AC=12,BD=9,根據(jù)勾股定理,求BE=15,即上下底的和為15,又因?yàn)橹形痪長(zhǎng)為上下底和的一半,所以為7.5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖a,梯形ABCD中,AB∥CD,AB=a,CD=b,點(diǎn)E、F分別是兩腰AD、BC上的點(diǎn),且EF∥AB,設(shè)EF到CD、AB的距離分別為d1、d2,某同學(xué)在對(duì)這一圖形進(jìn)行研究時(shí),發(fā)現(xiàn)如下事實(shí):
①當(dāng)
d1
d2
=
1
1
時(shí),有EF=
a+b
2

當(dāng)
d1
d2
=
1
2
時(shí),有EF=
a+2b
3
;
當(dāng)
d1
d2
=
1
3
時(shí),有EF=
a+3b
4
;
當(dāng)
d1
d2
=
1
4
時(shí),有EF=
a+4b
5
;
②當(dāng)
d1
d2
=
2
1
時(shí),有EF=
2a+b
3
;當(dāng)
d1
d2
=
3
1
時(shí),有EF=
3a+b
4
;
當(dāng)
d1
d2
=
4
1
時(shí),有EF=
4a+b
5
;當(dāng)
d1
d2
=
5
1
時(shí),有EF=
5a+b
6

根據(jù)以上結(jié)論,解答下列問(wèn)題:
(1)猜想當(dāng)
d1
d2
=
1
n
d1
d2
=
m
1
時(shí),分別能得到什么結(jié)論(其中m、n均為正整數(shù))?
(2)進(jìn)一步猜想當(dāng)
d1
d2
=
m
n
時(shí),有何結(jié)論(其中m、n均為正整數(shù))?并證明你的結(jié)論;
(3)如圖b,有一塊梯形耕地ABCD,AB∥CD,CD=100米,AB=300米,AD=500米,在AD上取兩點(diǎn)E、F,使DE=200米,EF=150米,分別從E、F兩處為起點(diǎn)開挖兩條平行于兩底的水渠,直到另一腰,求這兩條水渠的總長(zhǎng)度.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

12、如圖所示,在梯形ABCD中,AB∥CD,∠A=51°,∠B=78°,求證:CD+BC=AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•河南)如圖,在等邊三角形ABC中,BC=6cm.射線AG∥BC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG以1cm/s的速度運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā)沿射線BC以2cm/s的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s).
(1)連接EF,當(dāng)EF經(jīng)過(guò)AC邊的中點(diǎn)D時(shí),求證:△ADE≌△CDF;
(2)填空:
①當(dāng)t為
6
6
s時(shí),四邊形ACFE是菱形;
②當(dāng)t為
1.5
1.5
s時(shí),以A、F、C、E為頂點(diǎn)的四邊形是直角梯形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•德惠市二模)如圖,在梯形ABCD中,AB∥CD,AD⊥AB,AD=4cm,DC=6cm,CB=5cm.點(diǎn)P從點(diǎn)B出發(fā),以1cm/s的速度沿線段BA向點(diǎn)A勻速運(yùn)動(dòng);與此同時(shí),點(diǎn)Q從點(diǎn)A出發(fā),以2cm/s的速度沿折線AD-DC勻速運(yùn)動(dòng),過(guò)點(diǎn)P作PM⊥AB交折線BC-CD于點(diǎn)M,連接QM,PQ,當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(s),△PQM的面積為S(cm2).

(1)求線段AB的長(zhǎng).
(2)求Q,M兩點(diǎn)相遇時(shí)t的值.
(3)當(dāng)點(diǎn)Q在線段CD上運(yùn)動(dòng)時(shí),求S與t的函數(shù)關(guān)系式,并求S的最大值.
(4)設(shè)點(diǎn)N為線段PQ的中點(diǎn),當(dāng)點(diǎn)Q在線段AD上運(yùn)動(dòng)時(shí),點(diǎn)N所經(jīng)過(guò)的路徑是一條線段;當(dāng)點(diǎn)Q在線段CD上運(yùn)動(dòng)時(shí),點(diǎn)N所經(jīng)過(guò)的路徑也是一條線段.則這兩條線段長(zhǎng)分別為
5
5
cm,
1.5
1.5
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案