(2010•沈陽)2010年4月14日,國內(nèi)成品油價格迎來今年的首次提價,某市93號汽油的價格由6.25元/升漲到了6.52元/升,某報紙調(diào)查員就“關(guān)于汽油漲價對用車會造成的影響”這一問題向有機動車的私家車車主進行了問卷調(diào)查,并制作了統(tǒng)計圖表的一部分如下:
車主的態(tài)度百分比
A.沒有影響4%
B.影響不大,還可以接受P
C.有影響,現(xiàn)在用車次數(shù)減少了52%
D.影響很大,需要放棄用車m
E.不關(guān)心這個問題10%

(1)結(jié)合上述統(tǒng)計圖表可得:p=______,m=______;
(2)根據(jù)以上信息,請補全條形統(tǒng)計圖;
(3)2010年4月末,若該市有機動車的私家車車主約200000人,根據(jù)上述信息,請你估計一下持有“影響不大,還可以接受”這種態(tài)度的車主約有多少人?
【答案】分析:(1)圖表結(jié)合扇形統(tǒng)計圖求得p的結(jié)果,然后根據(jù)各項的百分比的和是1,即可求得m的值;
(2)根據(jù)統(tǒng)計表信息計算結(jié)果,補全條形統(tǒng)計圖;
(3)用200000乘以“影響不大,還可以接受”所占的百分比即可求得結(jié)果.
解答:解:(1)P對應(yīng)扇形圖中的B,所以p=24%,m對應(yīng)扇形圖中的D,所以m=10%;

(2)如圖;

(3)200000×24%=48000(人)
∴可以估計持有“影響不大,還可以接受”這種態(tài)度的車主約有48000人.
點評:本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年浙江省杭州市中考數(shù)學(xué)模擬試卷(32)(解析版) 題型:解答題

(2010•沈陽)如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+c與x軸正半軸交于點F(16,0),與y軸正半軸交于點E(0,16),邊長為16的正方形ABCD的頂點D與原點O重合,頂點A與點E重合,頂點C與點F重合.
(1)求拋物線的函數(shù)表達式;
(2)如圖2,若正方形ABCD在平面內(nèi)運動,并且邊BC所在的直線始終與x軸垂直,拋物線始終與邊AB交于點P且同時與邊CD交于點Q(運動時,點P不與A,B兩點重合,點Q不與C,D兩點重合).設(shè)點A的坐標(biāo)為(m,n)(m>0).
①當(dāng)PO=PF時,分別求出點P和點Q的坐標(biāo);
②在①的基礎(chǔ)上,當(dāng)正方形ABCD左右平移時,請直接寫出m的取值范圍;
③當(dāng)n=7時,是否存在m的值使點P為AB邊的中點?若存在,請求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2010•沈陽)如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+c與x軸正半軸交于點F(16,0),與y軸正半軸交于點E(0,16),邊長為16的正方形ABCD的頂點D與原點O重合,頂點A與點E重合,頂點C與點F重合.
(1)求拋物線的函數(shù)表達式;
(2)如圖2,若正方形ABCD在平面內(nèi)運動,并且邊BC所在的直線始終與x軸垂直,拋物線始終與邊AB交于點P且同時與邊CD交于點Q(運動時,點P不與A,B兩點重合,點Q不與C,D兩點重合).設(shè)點A的坐標(biāo)為(m,n)(m>0).
①當(dāng)PO=PF時,分別求出點P和點Q的坐標(biāo);
②在①的基礎(chǔ)上,當(dāng)正方形ABCD左右平移時,請直接寫出m的取值范圍;
③當(dāng)n=7時,是否存在m的值使點P為AB邊的中點?若存在,請求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:填空題

(2010•沈陽)一次函數(shù)y=-3x+6中,y的值隨x值增大而   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年遼寧省沈陽市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•沈陽)如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+c與x軸正半軸交于點F(16,0),與y軸正半軸交于點E(0,16),邊長為16的正方形ABCD的頂點D與原點O重合,頂點A與點E重合,頂點C與點F重合.
(1)求拋物線的函數(shù)表達式;
(2)如圖2,若正方形ABCD在平面內(nèi)運動,并且邊BC所在的直線始終與x軸垂直,拋物線始終與邊AB交于點P且同時與邊CD交于點Q(運動時,點P不與A,B兩點重合,點Q不與C,D兩點重合).設(shè)點A的坐標(biāo)為(m,n)(m>0).
①當(dāng)PO=PF時,分別求出點P和點Q的坐標(biāo);
②在①的基礎(chǔ)上,當(dāng)正方形ABCD左右平移時,請直接寫出m的取值范圍;
③當(dāng)n=7時,是否存在m的值使點P為AB邊的中點?若存在,請求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年遼寧省沈陽市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•沈陽)一次函數(shù)y=-3x+6中,y的值隨x值增大而   

查看答案和解析>>

同步練習(xí)冊答案