精英家教網(wǎng)如圖,A、B、C、D四點都在⊙O上,AD是⊙O的直徑,且AD=6cm,若∠ABC=∠CAD,求弦AC的長.
分析:連接DC,則∠ADC=∠ABC,而∠ABC=∠CAD,得到∠ADC=∠CAD,得AC=CD,又因為AD是⊙O的直徑,得到∠DCA=90°,于是AD=
2
AC,而AD=6cm,通過計算即可得到弦AC的長.
解答:解:連接DC,如圖,
精英家教網(wǎng)
∵∠ADC=∠ABC,
而∠ABC=∠CAD,
∴∠ADC=∠CAD,
∴AC=CD,
又∵AD是直徑,
∴∠ACD=90°(直徑所對的圓周角是直角),
在Rt△ACD中,
∴AC2+CD2=AD2
即2AC2=36,AC2=18,
AC=3
2
(cm).
故答案為:3
2
cm.
點評:本題考查了圓周角定理.在同圓或等圓中,同弧和等弧所對的圓周角相等,一條弧所對的圓周角是它所對的圓心角的一半.同時考查了圓周角的推論:直徑所對的圓周角為90度.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

14、如圖,已知⊙P的半徑OD=5,OD⊥AB,垂足是G,OG=3,則弦AB=
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知A,B兩點是反比例函數(shù)y=
4x
(x>0)的圖象上任意兩點,過A,B兩點分別作y軸的垂線,垂足分別為C,D,連接AB,AO,BO,梯形ABDC的面積為5,則△AOB的面積為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,AB=24,BC=26.先順次連接矩形各邊中點得菱形,又順次連接菱形各邊中點得矩形,再順次連接矩形各邊中點得菱形,照此繼續(xù),…,第10次連接的圖形的面積是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

6、如圖是某幾何體的三視圖,則這個幾何體是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖AB是⊙O的直徑,⊙O過BC的中點D,且DE⊥AC于點E.
(1)求證:DE是⊙O的切線;
(2)若∠C=30°,CD=
3
,求⊙O的半徑.

查看答案和解析>>

同步練習冊答案