如果a與-
1
3
互為相反數(shù),那么a等于(  )
分析:一個(gè)數(shù)的相反數(shù)就是在這個(gè)數(shù)前面添上“-”號(hào).
解答:解:-
1
3
的相反數(shù)是
1
3
,那么a等于
1
3

故選C.
點(diǎn)評(píng):本題考查了相反數(shù)的意義,一個(gè)數(shù)的相反數(shù)就是在這個(gè)數(shù)前面添上“-”號(hào):一個(gè)正數(shù)的相反數(shù)是負(fù)數(shù),一個(gè)負(fù)數(shù)的相反數(shù)是正數(shù),0的相反數(shù)是0.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:中華題王 數(shù)學(xué) 九年級(jí)上 (北師大版) 北師大版 題型:044

已知關(guān)于x的方程(k-1)x2+(2k-3)x+k+1=0有兩個(gè)不相等的實(shí)數(shù)根x1,x2

(1)求k的取值范圍.

(2)是否存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相

反數(shù)?如果存在,求出k的值;如果不存在,請(qǐng)說明理由.

解:(1)根據(jù)題意,得

△=(2k-3)2-4(k-1)(k+1)

=4k2-12k+9-4k2+4

=-12k+13>0

∴k<

∴k<時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根.

(2)存在.如果方程的兩個(gè)實(shí)數(shù)根互為相反數(shù),則

x1+x2=0

解得k=.檢驗(yàn)知,k==0的解.

所以,當(dāng)k=時(shí),方程的兩個(gè)實(shí)數(shù)根x1與x2互為相反數(shù).

當(dāng)你讀了上面的解答過程后,請(qǐng)判斷是否有錯(cuò)誤?如果有,請(qǐng)指出錯(cuò)誤之處,并直接寫出正確的答案.

查看答案和解析>>

同步練習(xí)冊(cè)答案