(10分)在平面直角坐標系內(nèi),A、B、C三點的坐標分別是A(5,0)、B(0,3)、C(5,3),O 為坐標原點,點E在線段BC上,若△AEO為等腰三角形, 求點E的坐標.(畫出圖象,不需要寫計算過程)
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(本小題10分)在平面直角坐標系中,將直線l:沿x軸翻折,得到一條新直線與x軸交于點A,與y軸交于點B,將拋物線沿x軸平移,得到一條新拋物線與y軸交于點D,與直線AB交于點E、點F.
(Ⅰ)求直線AB的解析式;
(Ⅱ)若線段DF∥x軸,求拋物線的解析式;
(Ⅲ)在(2)的條件下,若點F在y軸右側(cè),過F作FH⊥x軸于點G,與直線l交于點H,一條直線m(m不過△AFH的頂點)與AF交于點M,與FH交于點N,如果直線m既垂直于直線AB又平分△AFH的面積,求直線m的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本題滿分10分)在平面直角坐標系中,點P從原點O出發(fā),每次向上平移2個單位長度或向右平移1個單位長度.
(1)實驗操作:在平面直角坐標系中描出點P從點O出發(fā),平移1次后,2次后,3次后可能到達的點,并把相應(yīng)點的坐標填寫在表格中:

(2)觀察發(fā)現(xiàn):任一次平移,點P可能到達的點在我們學過的一種函數(shù)的圖象上,如:平移1次后在函數(shù)               的圖象上;平移2次后在函數(shù)              的圖象上……由此我們知道,平移次后在函數(shù)              的圖象上.(請?zhí)顚懴鄳?yīng)的解析式)
(3)探索運用:點P從點O出發(fā)經(jīng)過次平移后,到達直線上的點Q,且平移的路徑長不小于50,不超過56,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年濱海新區(qū)大港初中畢業(yè)生學業(yè)考試第一次模擬試卷數(shù)學 題型:解答題

(本小題10分)在平面直角坐標系中,將直線l:沿x軸翻折,得到一條新直線與x軸交于點A,與y軸交于點B,將拋物線沿x軸平移,得到一條新拋物線與y軸交于點D,與直線AB交于點E、點F.
(Ⅰ)求直線AB的解析式;
(Ⅱ)若線段DF∥x軸,求拋物線的解析式;
(Ⅲ)在(2)的條件下,若點F在y軸右側(cè),過F作FH⊥x軸于點G,與直線l交于點H,一條直線m(m不過△AFH的頂點)與AF交于點M,與FH交于點N,如果直線m既垂直于直線AB又平分△AFH的面積,求直線m的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(湖北咸寧卷)數(shù)學 題型:解答題

(本題滿分10分)在平面直角坐標系中,點P從原點O出發(fā),每次向上平移2個單位長度或向右平移1個單位長度.

(1)實驗操作: 在平面直角坐標系中描出點P從點O出發(fā),平移1次后,2次后,3次后可能到達的點,并把相應(yīng)點的坐標填寫在表格中:

(2)觀察發(fā)現(xiàn):任一次平移,點P可能到達的點在我們學過的一種函數(shù)的圖象上,如:平移1次后在函數(shù)                的圖象上;平移2次后在函數(shù)               的圖象上……由此我們知道,平移次后在函數(shù)               的圖象上.(請?zhí)顚懴鄳?yīng)的解析式)

(3)探索運用:點P從點O出發(fā)經(jīng)過次平移后,到達直線上的點Q,且平移的路徑長不小于50,不超過56,求點Q的坐標.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(湖北十堰卷)數(shù)學 題型:解答題

(本小題10分) 在平面直角坐標系中,將直線l:沿x軸翻折,得到一條新直線與x軸交于點A,與y軸交于點B,將拋物線沿x軸平移,得到一條新拋物線與y軸交于點D,與直線AB交于點E、點F.

(Ⅰ)求直線AB的解析式;

(Ⅱ)若線段DF∥x軸,求拋物線的解析式;

(Ⅲ)在(2)的條件下,若點F在y軸右側(cè),過F作FH⊥x軸于點G,與直線l交于點H,一條直線m(m不過△AFH的頂點)與AF交于點M,與FH交于點N,如果直線m既垂直于直線AB又平分△AFH的面積,求直線m的解析式.

 

查看答案和解析>>

同步練習冊答案