精英家教網 > 初中數學 > 題目詳情

Q(-5,6)x軸的距離為________;y軸的距離為________.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

22、邊長為1cm的8個小正方形拼成如圖所示的長4cm、寬2cm的長方形.將外圍的格點從1號編到12號.最初,點A、B、C分別位于4、8、12號格點上,現以逆時針方向同時移動A、B、C三點,每次各移動到下一個格點,繞了一周回到原先的位置,這過程中,△ABC有
6
次成為直角三角形;△ABC的面積最大是
4
cm2

查看答案和解析>>

科目:初中數學 來源: 題型:

8、下列直線中一定是圓的切線的是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

唐朝詩人李欣的詩《古從軍行》開頭兩句說:“白日登山望峰火,黃昏飲馬傍交河.”詩中隱含著一個有趣的數學問題--將軍飲馬問題:
如圖1所示,詩中將軍在觀望烽火之后從山腳下的A點出發(fā),走到河旁邊的P點飲馬后再到B點宿營.請問怎樣走才能使總的路程最短?
作法如下:如(1)圖,從B出發(fā)向河岸引垂線,垂足為D,在AP的延長線上,取B關于河岸的對稱點B′,連接AB′,與河岸線相交于P,則P點就是飲馬的地方,將軍只要從A出發(fā),沿直線走到P,飲馬之后,再由P沿直線走到B,所走的路程就是最短的.
(1)觀察發(fā)現
再如(2)圖,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,點E、F是底邊AD與BC的中點,連接EF,在線段EF上找一點P,使BP+AP最短.
作點B關于EF的對稱點,恰好與點C重合,連接AC交EF于一點,則這點就是所求的點P,故BP+AP的最小值為
 

精英家教網
(2)實踐運用
如(3)圖,已知⊙O的直徑MN=1,點A在圓上,且∠AMN的度數為30°,點B是弧AN的中點,點P在直徑MN上運動,求BP+AP的最小值.
精英家教網
(3)拓展遷移
如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
①求這條拋物線所對應的函數關系式;
②在拋物線的對稱軸直線x=1上找到一點M,使△ACM周長最小,請求出此時點M的坐標與△ACM周長最小值.(結果保留根號)
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

老師布置了一道思考題:如圖,點M,N分別在等邊△ABC的BC,CA邊上,且BM=CN,AM,BN交于點Q,求證:∠BQM=60°.
(1)請你完成這道思考題的證明.
(2)做完(1)后,同學們進行了反思,提出了許多問題,如:若將題中的點M,N分別移到BC,CA的延長線,直線AM,BN交于點Q,是否仍能得到∠BQM=60°?請你作出判斷,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知等邊三角形ABC和點P,設點P到△ABC的三邊AB,AC,BC的距離為h1,h2,h3,△ABC的高AM為h.
①當點P在△ABC的一邊BC上.如圖(1)所示,此時h3=0,可得結論h1+h2+h3
=
=
h.(填“>”或“=”或“<”)
②當點P在△ABC內部時,如圖(2)所示;當P在△ABC外部時,如圖(3)所示,這兩種情況上述結論是否成立?若成立,給予證明;若不成立,寫出新的關系式(不要求證明).

查看答案和解析>>

同步練習冊答案