小王剪了兩張直角三角形紙片,進行了如下的操作:
操作一:如圖1,將Rt△ABC沿某條直線折疊,使斜邊的兩個端點A與B重合,折痕為DE.
(1)如果AC=6cm,BC=8cm,可求得△ACD的周長為______;
(2)如果∠CAD:∠BAD=4:7,可求得∠B的度數(shù)為______;
操作二:如圖2,小王拿出另一張Rt△ABC紙片,將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,若AC=9cm,BC=12cm,請求出CD的長.

解:操作一:
(1)由折疊的性質(zhì)可得AD=BD,∵△ACD的周長=AC+CD+AD,
∴△ACD的周長=AC+CD+BD=AC+BC=8+6=14(cm);
故填:14cm;

(2)設(shè)∠CAD=4x,∠BAD=7x由題意得方程:
7x+7x+4x=90,
解之得x=5,
所以∠B=35°;
故填:35°;

操作二:∵AC=9cm,BC=12cm,
∴AB===15(cm),
根據(jù)折疊性質(zhì)可得AC=AE=9cm,
∴BE=AB-AE=6cm,
設(shè)CD=x,則BD=12-x,DE=x,
在Rt△BDE中,由題意可得方程x2+62=(12-x)2,
解之得x=4.5,
∴CD=4.5cm.
分析:操作一利用對稱找準相等的量:BD=AD,∠BAD=∠B,然后分別利用周長及三角形的內(nèi)角和可求得答案;
操作二 利用折疊找著AC=AE,利用勾股定理列式求出AB,設(shè)CD=x,表示出BD,AE,在Rt△BDE中,利用勾股定理可得答案;
點評:本題考查了直角三角形中的勾股定理的應(yīng)用及圖形的翻折問題;解決翻折問題時一般要找著相等的量,然后結(jié)合有關(guān)的知識列出方程進行解答.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

最近各地影院都在上映國產(chǎn)影片《集結(jié)號》,該片獲得了很多獎項,朋友推薦小明和小王去觀看,于是小明和小王買了兩張電影票去,座位號分別是11排7座和11排9座.
(1)怎樣才能既快又正確的找到座位?
(2)小明和小王的座位靠在一起嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

小王剪了兩張直角三角形紙片,進行了如下的操作:
操作一:如圖1,將Rt△ABC沿某條直線折疊,使斜邊的兩個端點A與B重合,折痕為DE.
(1)如果AC=6cm,BC=8cm,可求得△ACD的周長為
14cm
14cm
;
(2)如果∠CAD:∠BAD=4:7,可求得∠B的度數(shù)為
35°
35°
;
操作二:如圖2,小王拿出另一張Rt△ABC紙片,將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,若AC=9cm,BC=12cm,請求出CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

最近各地影院都在上映國產(chǎn)影片《集結(jié)號》,該片獲得了很多獎項,朋友推薦小明和小王去觀看,于是小明和小王買了兩張電影票去,座位號分別是11排7座和11排9座.
(1)怎樣才能既快又正確的找到座位?
(2)小明和小王的座位靠在一起嗎?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

最近各地影院都在上映國產(chǎn)影片《集結(jié)號》,該片獲得了很多獎項,朋友推薦小明和小王去觀看,于是小明和小王買了兩張電影票去,座位號分別是11排7座和11排9座.
(1)怎樣才能既快又正確的找到座位?
(2)小明和小王的座位靠在一起嗎?

查看答案和解析>>

同步練習冊答案