如圖,四邊形ABCD為圓內(nèi)接四邊形,對(duì)角線AC、BD交于點(diǎn)E,延長(zhǎng)DA、CB交于點(diǎn)F,且∠CAD=60°,DC=DE.
求證:
(1)AB=AF;
(2)A為△BEF的外心(即△BEF外接圓的圓心).

證明:(1)∠ABF=∠ADC=120°-∠ACD=120°-∠DEC
=120°-(60°+∠ADE)=60°-∠ADE,
而∠F=60°-∠ACF,
因?yàn)椤螦CF=∠ADE,
所以∠ABF=∠F,所以AB=AF.

(2)四邊形ABCD內(nèi)接于圓,所以∠ABD=∠ACD,
又DE=DC,所以∠DCE=∠DEC=∠AEB,
所以∠ABD=∠AEB,
所以AB=AE.
∵AB=AF,
∴AB=AF=AE,即A是三角形BEF的外心.
分析:(1)根據(jù)圓內(nèi)接四邊形的性質(zhì)和三角形的內(nèi)角和定理進(jìn)行證明;
(2)根據(jù)三角形的外心到三角形的三個(gè)頂點(diǎn)的距離相等的性質(zhì)只需證明AB=AF=AE,根據(jù)等腰三角形的性質(zhì)和判定進(jìn)行證明.
點(diǎn)評(píng):綜合運(yùn)用了圓內(nèi)接四邊形的性質(zhì)、三角形的內(nèi)角和定理以及三角形的外心的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD的對(duì)角線AC與BD互相垂直平分于點(diǎn)O,設(shè)AC=2a,BD=2b,請(qǐng)推導(dǎo)這個(gè)四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對(duì)角線、周長(zhǎng)、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)P,過(guò)點(diǎn)P作直線交AD于點(diǎn)E,交BC于點(diǎn)F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長(zhǎng)線上的一點(diǎn),且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案