【題目】探究與發(fā)現(xiàn)如圖1所示的圖形,像我們常見的學(xué)習(xí)用品﹣﹣圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”

(1)觀察“規(guī)形圖”,試探究∠BDC與∠A、∠B、∠C之間的關(guān)系并說明理由;

(2)請你直接利用以上結(jié)論,解決以下三個(gè)問題

如圖2,把一塊三角尺XYZ放置在△ABC,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點(diǎn)B、C,∠A=40°,則∠ABX+∠ACX=   °;

如圖3,DC平分∠ADB,EC平分∠AEB若∠DAE=40°,∠DBE=130°,求∠DCE的度數(shù);

如圖4,∠ABD,∠ACD10等分線相交于點(diǎn)G1G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度數(shù)

【答案】(1)∠BDC=A+B+C;(2)①50°;②85°;③63°.

【解析】

(1)延長BDACF,根據(jù)外角的性質(zhì),即可判斷出∠BDC=∠BAC+∠B+∠C

(2)由(1)可得∠ABX+∠ACX+∠A=∠BXC然后根據(jù)∠A=40°,∠BXC=90°,即可求出∠ABX+∠ACX的值

由(1)可得∠DBE=∠DAE+∠ADB+∠AEB再根據(jù)∠DAE=40°,∠DBE=130°,求出∠ADB+∠AEB的值然后根據(jù)∠DCE(∠ADB+∠AEB)+∠DAE,即可求出∠DCE的度數(shù)

根據(jù)∠BG1C(∠ABD+∠ACD)+∠A,∠BG1C=70°,設(shè)∠Ax°,可得∠ABD+∠ACD=133°﹣x°,解方程,求出x的值,即可判斷出∠A的度數(shù)

1)如圖(1),延長BDACF,根據(jù)外角的性質(zhì),可得:∠DFC=∠A+∠B

∵∠BDC=∠DFC+∠C,∴∠BDC=∠A+∠B+∠C;

(2)由(1),可得:∠ABX+∠ACX+∠A=∠BXC

∵∠A=40°,∠BXC=90°,∴∠ABX+∠ACX=90°﹣40°=50°.

故答案為:50.

由(1),可得:∠DBE=∠DAE+∠ADB+∠AEB,∴∠ADB+∠AEB=∠DBE﹣∠DAE=130°﹣40°=90°,∴(∠ADB+∠AEB)=90°÷2=45°,∴∠DCE(∠ADB+∠AEB)+∠DAE=45°+40°=85°;

BG1C(∠ABD+∠ACD)+∠A

∵∠BG1C=70°,∴設(shè)∠Ax°.

∵∠ABD+∠ACD=133°﹣x°

(133﹣x)+x=70,∴13.3x+x=70,解得x=63,即∠A的度數(shù)為63°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y1=x+b與雙曲線y2=交于點(diǎn)A(1,4)和點(diǎn)B,經(jīng)過點(diǎn)A的另一條直線與雙曲線y2=交于點(diǎn)C.則:

直線AB的解析式為y1=x+3;

B(1,4);

當(dāng)x>1時(shí),y2<y1

當(dāng)AC的解析式為y=4x時(shí),ABC是直角三角形.

其中正確的是 .(把所有正確結(jié)論的序號(hào)都寫在橫線上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,O為坐標(biāo)系原點(diǎn),A(3,0),B(3,1),C(0,1),將△OAB沿直線OB折疊,使得點(diǎn)A落在點(diǎn)D處,ODBC交于點(diǎn)E,則OD所在直線的解析式為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是一個(gè)矩形,BC=10cm,AB=8cm。現(xiàn)沿AE折疊,使點(diǎn)D恰好落在BC邊上的點(diǎn)F處,求:(1BF的長;(2CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,MN是⊙O的直徑,作ABMN,垂足為點(diǎn)D,連接AM,AN,點(diǎn)C上一點(diǎn),且,連接CM,交AB于點(diǎn)E,交AN于點(diǎn)F,現(xiàn)給出以下結(jié)論:①AD=BD;②∠MAN=90°;④∠ACM+ANM=MOBAE=MF

其中正確結(jié)論的個(gè)數(shù)是(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AD和BE是高,ABE=45°,點(diǎn)F是AB的中點(diǎn),AD與FE、BE分別交于點(diǎn)G、H,CBE=BAD.有下列結(jié)論:FD=FE;AH=2CD;BCAD=AE2;SABC=4SADF.其中正確的有

A.1個(gè) B.2 個(gè) C.3 個(gè) D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示為一個(gè)計(jì)算程序

(1)若輸入的x3,則輸出的結(jié)果為

(2)若開始輸入的x為正整數(shù),最后輸出的結(jié)果為40,則滿足條件的x的不同值最多有個(gè)

(3)規(guī)定:程序運(yùn)行到判斷結(jié)果是否大于0"為一次運(yùn)算.若運(yùn)算進(jìn)行了三次才輸出,求x的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:將邊長為1的正三角形OAP,沿x軸正方向連續(xù)翻轉(zhuǎn)若干次,點(diǎn)A依次落在點(diǎn)A1,A2,A3,A4,…,A2019的位置上,則點(diǎn)A2019的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為便于管理與場地安排,松北某中學(xué)校以小明所在班級為例,對學(xué)生參加各個(gè)體育項(xiàng)目進(jìn)行了調(diào)查統(tǒng)計(jì).并把調(diào)查的結(jié)果繪制了如圖所示的不完全統(tǒng)計(jì)圖,請你根據(jù)下列信息回答問題:

(1)在這次調(diào)查中,小明所在的班級參加籃球項(xiàng)目的同學(xué)有多少人?并補(bǔ)全條形統(tǒng)計(jì)圖.

(2)如果學(xué)校有800名學(xué)生,請估計(jì)全校學(xué)生中有多少人參加籃球項(xiàng)目.

查看答案和解析>>

同步練習(xí)冊答案