【題目】在﹣4,2,﹣1,3這四個(gè)數(shù)中,比﹣2小的數(shù)是( )
A.-4
B.2
C.-1
D.3
【答案】A
【解析】∵正數(shù)和0大于負(fù)數(shù),
∴排除2和3.
∵|﹣2|=2,|﹣1|=1,|﹣4|=4,
∴4>2>1,即|﹣4|>|﹣2|>|﹣1|,
∴﹣4<﹣2<﹣1.
故選:A.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用有理數(shù)大小比較的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握有理數(shù)比大。1、正數(shù)的絕對(duì)值越大,這個(gè)數(shù)越大2、正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小3、正數(shù)大于一切負(fù)數(shù)4、兩個(gè)負(fù)數(shù)比大小,絕對(duì)值大的反而小5、數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大6、大數(shù)-小數(shù) > 0,小數(shù)-大數(shù) < 0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時(shí)出發(fā),設(shè)慢車行駛的時(shí)間為x h,兩車之間的距離為y km,如圖所示的折線表示y與x之間的函數(shù)關(guān)系.根據(jù)圖象進(jìn)行以下探究:
(1)甲、乙兩地之間的距離為_______km;
(2)請(qǐng)解釋圖中點(diǎn)B的實(shí)際意義;
(3)求慢車和快車的速度;
(4)求線段BC所表示的y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一個(gè)三角形的各邊長(zhǎng)擴(kuò)大為原來(lái)的5倍,則此三角形的周長(zhǎng)擴(kuò)大為原來(lái)的倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等腰三角形的一個(gè)角是80°,則它頂角的度數(shù)是( 。
A.80°
B.80°或20°
C.80°或50°
D.20°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C為線段AE上一動(dòng)點(diǎn)(不與點(diǎn)A、E重合),在AE同側(cè)分別作正△ABC和正△CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ.以下五個(gè)結(jié)論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.
恒成立的結(jié)論有 .(把你認(rèn)為正確的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明跳起投籃,球出手時(shí)離地面m,球出手后在空中沿拋物線路徑運(yùn)動(dòng),并在距出手點(diǎn)水平距離4m處達(dá)到最高度4m.已知籃筐中心距地面3m,與球出手時(shí)的水平距離為8m,建立如圖所示的平面直角坐標(biāo)系.
(1)求此拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)此次投籃,球能否直接命中籃筐中心?若能,請(qǐng)說(shuō)明理由;若不能,在出手的角度和力度都不變的情況下,球出手時(shí)距離地面多少米可使球直接命中籃筐中心?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一只箱子里共3個(gè)球,其中2個(gè)白球,1個(gè)紅球,它們除顏色外均相同。
(1)從箱子中任意摸出一個(gè)球是白球的概率是多少?
(2)從箱子中任意摸出一個(gè)球,不將它放回箱子,攪勻后再摸出一個(gè)球,求兩次摸出的球都是白球的概率,并畫出樹狀圖或列出表格。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A(2,0),直線y=(2-)x-2與x軸交于點(diǎn)F,與y軸交于點(diǎn)B,直線l∥AB且交y軸于點(diǎn)C,交x軸于點(diǎn)D,點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)為A′,連接AA′、A′D.直線l從AB出發(fā),以每秒1個(gè)單位的速度沿y軸正方向向上平移,設(shè)移動(dòng)時(shí)間為t.
(1)求點(diǎn)A′ 的坐標(biāo)(用含t的代數(shù)式表示);
(2)求證:AB=AF;
(3)過(guò)點(diǎn)C作直線AB的垂線交直線y=(2-)x-2于點(diǎn)E,以點(diǎn)C為圓心CE為半徑作⊙C,求當(dāng)t為何值時(shí),⊙C與△AA′D三邊所在直線相切?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com