如圖,拋物線y=ax2-2x+c經(jīng)過直線y=x-3與坐標(biāo)軸的兩個(gè)交點(diǎn)A、B,此拋物線與x軸的另一個(gè)交點(diǎn)為C,拋物線的頂點(diǎn)為D.
(1)求此拋物線的解析式;
(2)⊙M是過A、B、C三點(diǎn)的圓,連接MC、MB、BC,求劣弧CB的長(zhǎng);(結(jié)果用精確值表示)
(3)點(diǎn)P為拋物線上的一個(gè)動(dòng)點(diǎn),求使S△APC:S△ACD=5:4的點(diǎn)P的坐標(biāo).(結(jié)果用精確值表示)

【答案】分析:(1)可先根據(jù)直線的解析式求出A、B兩點(diǎn)的坐標(biāo),然后將兩點(diǎn)的坐標(biāo)代入拋物線中即可得出拋物線的解析式.
(2)求弧長(zhǎng)需要知道兩個(gè)條件:圓的半徑和弧所對(duì)的圓心角,圓心角可通過求∠OAB的度數(shù)來得出.而半徑的長(zhǎng)可通過∠CMB的度數(shù)和BC的長(zhǎng)來求出.然后根據(jù)弧長(zhǎng)計(jì)算公式即可得出劣弧CB的長(zhǎng).
(3)可先求出△ACD的面積,然胡根據(jù)兩三角形的面積比求出△APC的面積.△APC中,AC的長(zhǎng)為定值,因此可根據(jù)△APC的面積求出P點(diǎn)的縱坐標(biāo)的絕對(duì)值,然后將P點(diǎn)的縱坐標(biāo)代入拋物線的解析式中即可求出P的坐標(biāo).
解答:解:(1)把x=0和y=0分別代入y=x-3,
得當(dāng)x=0時(shí),y=-3;
當(dāng)y=0時(shí),x=3.
∴A(3,0),B(0,-3).
把x=0時(shí),y=-3;當(dāng)y=0時(shí),x=3代入y=ax2-2x+c,

解得:,
∴y=x2-2x-3.

(2)當(dāng)y=0時(shí),x2-2x-3=0,
解得x1=3,x2=-1.
∴C(-1,0)
∴AC=4,BC=
∵OA=OB=3,
∴∠CAB=45°,
∴∠CMB=90度.
∴MB=MC=
的長(zhǎng)是π.

(3)∵y=x2-2x-3的對(duì)稱軸是x=-=1,
當(dāng)x=1時(shí),y=-4,
∴D(1,-4).
∴S△ACD=×4×4=8,
∴S△APC=10.
設(shè)存在點(diǎn)P(x,y),
∴|y|=5.
∴y=5時(shí),x2-2x-3=5,
解得x1=4,x2=-2,
當(dāng)y=-5時(shí),P點(diǎn)不在拋物線上,
∴P1(4,5),P2(-2,5).
點(diǎn)評(píng):本題著重考查了待定系數(shù)法求二次函數(shù)解析式、圓周角定理、弧長(zhǎng)的計(jì)算公式等知識(shí)點(diǎn),綜合性強(qiáng),考查學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,直線y=ax+b與拋物線y=ax2+bx+c的圖象在同一坐標(biāo)系中可能是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y1=-ax2-ax+1經(jīng)過點(diǎn)P(-
1
2
,
9
8
),且與拋物線y2=ax2-ax-1相交于A,B兩點(diǎn).
(1)求a值;
(2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),觀察M,N,E,F(xiàn)四點(diǎn)的坐標(biāo),寫出一條正確的結(jié)論,并通過計(jì)算說明;
(3)設(shè)A,B兩點(diǎn)的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動(dòng)點(diǎn)Q(x,0),且xA≤x≤xB,過Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D精英家教網(wǎng)兩點(diǎn),試問當(dāng)x為何值時(shí),線段CD有最大值,其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=-ax2+ax+6a交x軸負(fù)半軸于點(diǎn)A,交x軸正半軸于點(diǎn)B,交y軸正半軸于點(diǎn)D,精英家教網(wǎng)O為坐標(biāo)原點(diǎn),拋物線上一點(diǎn)C的橫坐標(biāo)為1.
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)求證:四邊形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線的頂點(diǎn)為點(diǎn)D,與y軸相交于點(diǎn)A,直線y=ax+3與y軸也交于點(diǎn)A,矩形ABCO的頂點(diǎn)B在精英家教網(wǎng)此拋物線上,矩形面積為12,
(1)求該拋物線的對(duì)稱軸;
(2)⊙P是經(jīng)過A、B兩點(diǎn)的一個(gè)動(dòng)圓,當(dāng)⊙P與y軸相交,且在y軸上兩交點(diǎn)的距離為4時(shí),求圓心P的坐標(biāo);
(3)若線段DO與AB交于點(diǎn)E,以點(diǎn)D、A、E為頂點(diǎn)的三角形是否有可能與以點(diǎn)D、O、A為頂點(diǎn)的三角形相似,如果有可能,請(qǐng)求出點(diǎn)D坐標(biāo)及拋物線解析式;如果不可能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線y=ax2+ax+c與y軸交于點(diǎn)C(0,-2),精英家教網(wǎng)與x軸交于點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(-2,0).
(1)求該拋物線的解析式;
(2)M是線段OB上一動(dòng)點(diǎn),N是線段OC上一動(dòng)點(diǎn),且ON=2OM,分別連接MC、MN.當(dāng)△MNC的面積最大時(shí),求點(diǎn)M、N的坐標(biāo);
(3)若平行于x軸的動(dòng)直線與該拋物線交于點(diǎn)P,與線段AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(-1,0).問:是否存在直線l,使得△ODF是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案