對于平面直角坐標(biāo)系xOy中的點P和⊙C,給出如下的定義:若⊙C上存在兩個點A、B,使得∠APB=60°,則稱P為⊙C的關(guān)聯(lián)點.已知點D(,),E(0,-2),F(xiàn)(2,0).
(1)當(dāng)⊙O的半徑為1時,
①在點D、E、F中,⊙O的關(guān)聯(lián)點是______.
②過點F作直線l交y軸正半軸于點G,使∠GFO=30°,若直線l上的點P(m,n)是⊙O的關(guān)聯(lián)點,求m的取值范圍;
(2)若線段EF上的所有點都是某個圓的關(guān)聯(lián)點,求這個圓的半徑r的取值范圍.

【答案】分析:(1)①根據(jù)關(guān)聯(lián)點的定義得出E點是⊙O的關(guān)聯(lián)點,進而得出F、D,與⊙O的關(guān)系;
②若P要剛好是⊙C的關(guān)聯(lián)點,需要點P到⊙C的兩條切線PA和PB之間所夾的角為60°,進而得出PC的長,進而得出點P到圓心的距離d滿足0≤d≤2r,再考慮臨界點位置的P點,進而得出m的取值范圍;
(2)若線段EF上的所有點都是某個圓的關(guān)聯(lián)點,欲使這個圓的半徑最小,則這個圓的圓心應(yīng)在線段EF的中點;再考慮臨界情況,即恰好E、F點為⊙K的關(guān)聯(lián)時,則KF=2KN=EF=2,即可得出圓的半徑r的取值范圍.
解答:解:(1)①如圖1所示,過點E作⊙O的切線設(shè)切點為R,
∵⊙O的半徑為1,∴RO=1,
∵EO=2,
∴∠OER=30°,
根據(jù)切線長定理得出⊙O的左側(cè)還有一個切點,使得組成的角等于30°,
∴E點是⊙O的關(guān)聯(lián)點,
∵D(,),E(0,-2),F(xiàn)(2,0),
∴OF>EO,DO<EO,
∴D點一定是⊙O的關(guān)聯(lián)點,而在⊙O上不可能找到兩點與點F的連線的夾角等于60°,
故在點D、E、F中,⊙O的關(guān)聯(lián)點是D,E;
故答案為:D,E;

②由題意可知,若P要剛好是⊙C的關(guān)聯(lián)點,
需要點P到⊙C的兩條切線PA和PB之間所夾的角為60°,
由圖2可知∠APB=60°,則∠CPB=30°,
連接BC,則PC==2BC=2r,
∴若P點為⊙C的關(guān)聯(lián)點,則需點P到圓心的距離d滿足0≤d≤2r;
由上述證明可知,考慮臨界點位置的P點,
如圖3,點P到原點的距離OP=2×1=2,
過點O作l軸的垂線OH,垂足為H,tan∠OGF===,
∴∠OGF=60°,
∴OH=OGsin60°=;
sin∠OPH==,
∴∠OPH=60°,
可得點P1與點G重合,
過點P2作P2M⊥x軸于點M,
可得∠P2OM=30°,
∴OM=OP2cos30°=
從而若點P為⊙O的關(guān)聯(lián)點,則P點必在線段P1P2上,
∴0≤m≤;

(2)若線段EF上的所有點都是某個圓的關(guān)聯(lián)點,欲使這個圓的半徑最小,則這個圓的圓心應(yīng)在線段EF的中點;
考慮臨界情況,如圖4,
即恰好E、F點為⊙K的關(guān)聯(lián)時,則KF=2KN=EF=2,
此時,r=1,
故若線段EF上的所有點都是某個圓的關(guān)聯(lián)點,這個圓的半徑r的取值范圍為r≥1.
點評:此題主要考查了圓的綜合應(yīng)用以及切線判定與性質(zhì)以及銳角三角函數(shù)關(guān)系和新概念等知識,注意臨界點位置的應(yīng)用是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•無錫)對于平面直角坐標(biāo)系中的任意兩點P1(x1,y1),P2(x2,y2),我們把|x1-x2|+|y1-y2|叫做P1、P2兩點間的直角距離,記作d(P1,P2).
(1)已知O為坐標(biāo)原點,動點P(x,y)滿足d(O,P)=1,請寫出x與y之間滿足的關(guān)系式,并在所給的直角坐標(biāo)系中畫出所有符合條件的點P所組成的圖形;
(2)設(shè)P0(x0,y0)是一定點,Q(x,y)是直線y=ax+b上的動點,我們把d(P0,Q)的最小值叫做P0到直線y=ax+b的直角距離.試求點M(2,1)到直線y=x+2的直角距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•燕山區(qū)一模)定義:對于平面直角坐標(biāo)系中的任意線段AB及點P,任取線段AB上一點Q,線段PQ長度的最小值稱為點P到線段AB的距離,記作d(P→AB).
已知O為坐標(biāo)原點,A(4,0),B(3,3),C(m,n),D(m+4,n)是平面直角坐標(biāo)系中四點.根據(jù)上述定義,解答下列問題:
(1)點A到線段OB的距離d(A→OB)=
2
2
2
2

(2)已知點G到線段OB的距離d(G→OB)=
5
,且點G的橫坐標(biāo)為1,則點G的縱坐標(biāo)為
1-
10
或1+
10
1-
10
或1+
10

(3)當(dāng)m的值變化時,點A到動線段CD的距離d (A→CD)始終為2,線段CD的中點為M.
①在圖(2)中畫出點M隨線段CD運動所圍成的圖形并求出該圖形的面積.
②點E的坐標(biāo)為(0,2),m>0,n>0,作MH⊥x軸,垂足為H.是否存在m的值,使得以A、M、H為頂點的三角形與△AOE相似?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•北京)對于平面直角坐標(biāo)系xOy中的點P和⊙C,給出如下的定義:若⊙C上存在兩個點A、B,使得∠APB=60°,則稱P為⊙C的關(guān)聯(lián)點.已知點D(
1
2
,
1
2
),E(0,-2),F(xiàn)(2
3
,0).
(1)當(dāng)⊙O的半徑為1時,
①在點D、E、F中,⊙O的關(guān)聯(lián)點是
D,E
D,E

②過點F作直線l交y軸正半軸于點G,使∠GFO=30°,若直線l上的點P(m,n)是⊙O的關(guān)聯(lián)點,求m的取值范圍;
(2)若線段EF上的所有點都是某個圓的關(guān)聯(lián)點,求這個圓的半徑r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•房縣模擬)問題:對于平面直角坐標(biāo)系中的任意兩點P1(x1,y1)、P2(x2,y2),我們把|x1-x2|+|y1-y2|叫做P1、P2兩點間的直角距離,記作d(P1,P2).如:P(-2,3)、Q(2,5)則P、Q兩點的直角距離為d(P,Q)=|-2-2|+|3-5|=6
請根據(jù)根據(jù)以上閱讀材料,解答下列問題:
(1)計算M(-2,7),N(-3,-5)的直角距離d(M,N)=
13
13

(2)已知O為坐標(biāo)原點,動點P(x,y)滿足d(O,P)=1,則x與y之間滿足的關(guān)系式為
|x|+|y|=1
|x|+|y|=1

(3)設(shè)P0(x0,y0)是一定點,Q(x,y)是直線y=ax+b上的動點,我們把d(P0,Q)的最小值叫做P0到直線y=ax+b的直角距離,試求點M(4,2)到直線y=x+2的直角距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(北京卷)數(shù)學(xué)(解析版) 題型:解答題

對于平面直角坐標(biāo)系xOy中的點P和⊙C,給出如下定義:若⊙C上存在兩個點A,B,使得∠APB=60°,則稱P為⊙C 的關(guān)聯(lián)點。已知點D(,),E(0,-2),F(xiàn)(,0)

(1)當(dāng)⊙O的半徑為1時,

①在點D,E,F(xiàn)中,⊙O的關(guān)聯(lián)點是       

②過點F作直線交y軸正半軸于點G,使∠GFO=30°,若直線上的點P(m,n)是⊙O的關(guān)聯(lián)點,求m的取值范圍;

(2)若線段EF上的所有點都是某個圓的關(guān)聯(lián)點,求這個圓的半徑r的取值范圍。

 

查看答案和解析>>

同步練習(xí)冊答案