如圖,AB⊥BC,BC⊥CD,∠EBC=∠BCF,則∠ABE與∠FCD的關系是( 。
分析:首先根據(jù)垂直可得∠ABC=∠DCB=90°,再根據(jù)等角的余角相等可得∠ABE=∠FCD.
解答:解:∵AB⊥BC,BC⊥CD,
∴∠ABC=∠DCB=90°,
∵∠EBC=∠BCF,
∴∠ABE=∠FCD.
故選:B.
點評:此題主要考查了垂直定義,以及余角的性質(zhì),關鍵是掌握等角的余角相等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,AB=BC=CA=AD,AH⊥CD于H,CP⊥BC,CP交AH于P.求證:△ABC的面積S=
3
4
AP•BD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

12、如圖,AB=BC=CD,且∠A=15°,則∠ECD=( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

12、如圖,AB=BC=CD=1,則圖中所有線段長度之和為
10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB=BC=AC=AD,那么∠BDC等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,則線段AE的長為
2
2

查看答案和解析>>

同步練習冊答案