【題目】如圖,在ABC中,AB=AC,DE是過點(diǎn)A的直線,BDDE于D,CEDE于點(diǎn)E;

(1)若B、C在DE的同側(cè)(如圖所示)且AD=CE.求證:ABAC;

(2)若B、C在DE的兩側(cè)(如圖所示),其他條件不變,AB與AC仍垂直嗎?若是請(qǐng)給出證明;若不是,請(qǐng)說明理由.

【答案】見解析

【解析】

試題分析:(1)由已知條件,證明ABD≌△ACE,再利用角與角之間的關(guān)系求證BAD+CAE=90°,即可證明ABAC;

(2)同(1),先證ABD≌△ACE,再利用角與角之間的關(guān)系求證BAD+CAE=90°,即可證明ABAC

(1)證明:BDDE,CEDE

∴∠ADB=AEC=90°,

在RtABD和RtACE中,

,

RtABDRtCAE

∴∠DAB=ECADBA=ACE

∵∠DAB+DBA=90°,EAC+ACE=90°

∴∠BAD+CAE=90°

BAC=180°﹣(BAD+CAE)=90°.

ABAC

(2)ABAC.理由如下:

同(1)一樣可證得RtABDRtACE

∴∠DAB=ECA,DBA=EAC,

∵∠CAE+ECA=90°,

∴∠CAE+BAD=90°,即BAC=90°

ABAC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ABCD中,∠BAD的平分線交BC于點(diǎn)E,ABC的平分線交AD于點(diǎn)F

(1)求證:四邊形ABEF是菱形;

(2)若AB=10,BF=16,AD=15, □ABCD 的面積是    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=4,過對(duì)角線BD中點(diǎn)O的直線分別交AB,CD于點(diǎn)E,F(xiàn).

(1)求證:四邊形BEDF是平行四邊形;

(2)當(dāng)四邊形BEDF是菱形時(shí),求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)平面中,O為原點(diǎn),點(diǎn)A的坐標(biāo)為(20,0),點(diǎn)B在第一象限內(nèi),BO=10,sin∠BOA=

(1)在圖中,求作△ABO的外接圓;(尺規(guī)作圖,不寫作法但需保留作圖痕跡)
(2)求點(diǎn)B的坐標(biāo)與cos∠BAO的值;
(3)若A,O位置不變,將點(diǎn)B沿 軸正半軸方向平移使得△ABO為等腰三角形,請(qǐng)直接寫出平移距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,點(diǎn)E、F分別是BC、CD上的動(dòng)點(diǎn)(不與點(diǎn)B,C,D重合),且∠EAF=45°,AE、AF與對(duì)角線BD分別相交于點(diǎn)G、H,連接EH、EF,則下列結(jié)論:① △ABH∽△GAH; ② △ABG∽△HEG; ③ AE= AH; ④ EH⊥AF; ⑤ EF=BE+DF
其中正確的有( )個(gè)。

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售A,B兩種型號(hào)計(jì)算器,兩種計(jì)算器的進(jìn)貨價(jià)格分別為每臺(tái)30元,40元. 商場銷售5臺(tái)A型號(hào)和1臺(tái)B型號(hào)計(jì)算器,可獲利潤76元;銷售6臺(tái)A型號(hào)和3臺(tái)B型號(hào)計(jì)算器,可獲利潤120元.
(1)求商場銷售A,B兩種型號(hào)計(jì)算器的銷售價(jià)格分別是多少元?
(2)商場準(zhǔn)備用不多于2500元的資金購進(jìn)A,B兩種型號(hào)計(jì)算器共70臺(tái),問最少需要購進(jìn)A型號(hào)的計(jì)算器多少臺(tái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點(diǎn),則函數(shù)y=ax2+(b﹣1)x+c的圖象可能是(

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AB=3cmBC=5cm,B=60°GCD的中點(diǎn),E是邊AD上的動(dòng)點(diǎn),EG的延長線與BC的延長線交于點(diǎn)F,連結(jié)CE,DF

1)求證:四邊形CEDF是平行四邊形;

2當(dāng)AE= cm時(shí),四邊形CEDF是矩形;當(dāng)AE= cm時(shí),四邊形CEDF是菱形.(直接寫出答案,不需要說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了加強(qiáng)公民的節(jié)約意識(shí),我市出臺(tái)階梯電價(jià)計(jì)算方案如下表:

價(jià)目表

不超過度的部分

/

超過度不超過度的部分

/

超過度的部分

/

注:電費(fèi)按月結(jié)算

某戶居民月份應(yīng)繳電費(fèi)元,該戶居民月份用電多少度?

某戶居民月份用電度,應(yīng)繳電費(fèi)元,求的值;

(度)表示月用電量,請(qǐng)根據(jù)的不同取值范圍用含的代數(shù)式表示該月應(yīng)繳電費(fèi).

查看答案和解析>>

同步練習(xí)冊(cè)答案