年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點(diǎn)C與點(diǎn)E重合),點(diǎn)B、C(E)、F在同一條直線上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC = 8 cm,BC = 6 cm,EF = 9 cm。
如圖(2),△DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CB向△ABC勻速移動(dòng),在△DEF移動(dòng)的同時(shí),點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),以2 cm/s的速度沿BA向點(diǎn)A勻速移動(dòng)。當(dāng)△DEF的頂點(diǎn)D移動(dòng)到AC邊上時(shí),△DEF停止移動(dòng),點(diǎn)P也隨之停止移。DE與AC相交于點(diǎn)Q,連接PQ,設(shè)移動(dòng)時(shí)間為t(s)(0<t<4.5)。解答下列問題:
(1)當(dāng)t為何值時(shí),點(diǎn)A在線段PQ的垂直平分線上?
(2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;是否存在某一時(shí)刻t,使面積y最?若存在,求出y的最小值;若不存在,說明理由。
(3)是否存在某一時(shí)刻t,使P、Q、F三點(diǎn)在同一條直線上?若存在,求出此時(shí)t的值;若不存在,說明理由。(圖(3)供同學(xué)們做題使用)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在梯形ABCD中,AD//BC,AB=DC,AC與BD
相交于點(diǎn)P.已知A(2, 3),B(1, 1),D(4, 3),則點(diǎn)
P的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,雙曲線與直線交于點(diǎn)M、N,并且點(diǎn)M的坐標(biāo)為(1,3),點(diǎn)N的縱坐標(biāo)為-1.根據(jù)圖象信息可得關(guān)于x的方程的解為
A.-3,1 B.-3,3 C.-1,1 D.-1,3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖1,拋物線與軸交于兩點(diǎn),與軸交于點(diǎn),連結(jié)AC,若
(1)求拋物線的解析式;
(2)拋物線對(duì)稱軸上有一動(dòng)點(diǎn)P,當(dāng)時(shí),求出點(diǎn)的坐標(biāo);
(3)如圖2所示,連結(jié),是線段上(不與、重合)的一個(gè)動(dòng)點(diǎn).過點(diǎn)作直線,交拋物線于點(diǎn),連結(jié)、,設(shè)點(diǎn)的橫坐標(biāo)為.當(dāng)t為何值時(shí),的面積最大?最大面積為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知雙曲線y=與拋物線y=ax2+bx+c交于A(2,3),B(m,2),c(-3,n)三點(diǎn),求雙曲線與拋物線的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com