【題目】金佛山是巴蜀四大名山之一游客上金佛山有兩種方式:一種是從西坡上山,如圖,先從A沿登山步道走到點(diǎn)B,再沿索道乘坐纜車到點(diǎn)C;另一種是從北坡景區(qū)沿著盤山公路開車上山到點(diǎn)C.已知在點(diǎn)A處觀測(cè)點(diǎn)C,得仰角∠CAD=37°,且A、B的水平距離AE=1000米,索道BC的坡度i=1:,長(zhǎng)度為2600米,CD⊥AD于點(diǎn)D,BF⊥CD于點(diǎn)F則BE的高度為(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°=0.75,=1.73)( 。
A.2436.8米B.2249.6米C.1036.8米D.1136.8米
【答案】D
【解析】
在Rt△BCF中,根據(jù)BC的坡度i=1:,求得∠CBF=30°,根據(jù)三角函數(shù)的定義得到CF=1300,BF=1300,根據(jù)矩形的性質(zhì)得到DE=BF=1300,根據(jù)三角函數(shù)的定義即可得到結(jié)論.
解:在Rt△BCF中,∵BC的坡度i=1:,
∴∠CBF=30°,
∵BC=2600,
∴CF=1300,BF=1300,
∵CD⊥AD于點(diǎn)D,BF⊥CD,BE⊥AD,
∴四邊形BEDF是矩形,
∴DE=BF=1300,
∵AE=1000米,
∴AD=AE+DE=1000+1300,
∵∠CAD=37°,
∴CD=ADtan37°=(1000+1300)×0.75=2436.75,
∴BE=DF=2436.75﹣1300≈1136.8米,
答:BE的高度為1136.8米.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:內(nèi)接于,過(guò)點(diǎn)作的切線,交的延長(zhǎng)線于點(diǎn),連接.
(1)如圖1,求證:;
(2)如圖2,過(guò)點(diǎn)作于點(diǎn),連接,交于點(diǎn),,求證:;
(3)如圖3,在(2)的條件下,點(diǎn)為上一點(diǎn),過(guò)點(diǎn)的切線交的延長(zhǎng)線于點(diǎn),連接,交的延長(zhǎng)線于點(diǎn),連接,,點(diǎn)為上一點(diǎn),連接,若,,,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如右圖,點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B是x軸正半軸上的一動(dòng)點(diǎn),以AB為邊作等腰直角△ABC,使∠BAC=90°,如果點(diǎn)B的橫坐標(biāo)為x,點(diǎn)C的縱坐標(biāo)為y,那么表示y與x的函數(shù)關(guān)系的圖像大致是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在平面直角坐標(biāo)系中,拋物線與軸交于點(diǎn),(點(diǎn)在點(diǎn)的右側(cè)),點(diǎn)為拋物線的頂點(diǎn),點(diǎn)的縱坐標(biāo)為-2.
(1)如圖1,求此拋物線的解析式;
(2)如圖2,點(diǎn)是第一象限拋物線上一點(diǎn),連接,過(guò)點(diǎn)作軸交于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為,的長(zhǎng)為,求與的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);
(3)如圖3,在(2)的條件下,點(diǎn)在上,且,點(diǎn)的橫坐標(biāo)大于3,連接,,,且,過(guò)點(diǎn)作交于點(diǎn),若,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AD是BC邊上的中線,點(diǎn)E是AD上一點(diǎn),過(guò)點(diǎn)B作BF∥EC,交AD的延長(zhǎng)線于點(diǎn)F,連接BE,CF.
(1)求證:△BDF≌△CDE;
(2)當(dāng)ED與BC滿足什么數(shù)量關(guān)系時(shí),四邊形BECF是正方形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人駕車分別從A、B兩地相向而行,乙出發(fā)半小時(shí)后甲出發(fā),甲出發(fā)1.5小時(shí)后汽車出現(xiàn)故障,于是甲停下修車,半小時(shí)后甲修好后繼續(xù)沿原路按原速與乙相遇,相遇后甲隨即調(diào)頭以原速返回A地,乙也繼續(xù)向A地行駛,甲、乙兩車之間的距離(y/千米)與甲駕車時(shí)間x(小時(shí))之間的關(guān)系如圖所示,當(dāng)乙到達(dá)A地時(shí),甲距離B地_____千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,已知拋物線y=﹣x2+x+2與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),拋物線的頂點(diǎn)為Q,連接BC.
(1)求直線BC的解析式;
(2)點(diǎn)P是直線BC上方拋物線上的一點(diǎn),過(guò)點(diǎn)P作PD⊥BC于點(diǎn)D,在直線BC上有一動(dòng)點(diǎn)M,當(dāng)線段PD最大時(shí),求PM+MB最小值;
(3)如圖②,直線AQ交y軸于G,取線段BC的中點(diǎn)K,連接OK,將△GOK沿直線AQ平移得△G′O'K′,將拋物線y=﹣x2+x+2沿直線AQ平移,記平移后的拋物線為y′,當(dāng)拋物線y′經(jīng)過(guò)點(diǎn)Q時(shí),記頂點(diǎn)為Q′,是否存在以G'、K'、Q'為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)G′的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-2,0),B(2,0),點(diǎn)P在直線上,若△ABP是直角三角形,則點(diǎn)P的坐標(biāo)為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線y=﹣x+2與x軸交于點(diǎn)B,與y軸交于點(diǎn)C,拋物線y=-x2+bx+c經(jīng)過(guò)B、C兩點(diǎn),點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PQ⊥x軸,垂足為Q,交直線y=﹣x+2于點(diǎn)D.設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)若以P、D、O、C為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)Q的坐標(biāo);
(3)如圖2,當(dāng)點(diǎn)P位于直線BC上方的拋物線上時(shí),過(guò)點(diǎn)P作PE⊥BC于點(diǎn)E,求當(dāng)PE取得最大值時(shí)點(diǎn)P的坐標(biāo),并求PE的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com