將下列各式因式分解:
(1)a3﹣16a;
(2)4ab+1﹣a2﹣4b2.
(3)9(a﹣b)2+12(a2﹣b2)+4(a+b)2;
(4)x2﹣2xy+y2+2x﹣2y+1.
(5)(x2﹣2x)2+2x2﹣4x+1.
(6)49(x﹣y)2﹣25(x+y)2
(7)81x5y5﹣16xy
(8)(x2﹣5x)2﹣36.
(1)a(a+4)(a﹣4)
(2)(1+a﹣2b)(1﹣a+2b)
(3)(5a﹣b)2
(4)(x﹣y+1)2
(5)(x﹣1)4
(6)4(6x﹣y)(x﹣6y)
(7)xy(9x2y2+4)(3xy+2)(3xy﹣2)
(8)(x﹣2)(x﹣3)(x﹣6)(x+1)
【解析】
試題分析:(1)先提取公因式a,再對余下的多項式利用平方差公式繼續(xù)分解;
(2)先將第一、三、四項作為一組,提取﹣1后寫成完全平方式,再利用平方差公式分解;
(3)將(a+b),(a﹣b)看作一個整體,利用完全平方公式分解因式;
(4)x2﹣2xy+y2+2x﹣2y+1變形為(x﹣y)2+2(x﹣y)+1,利用完全平方公式分解因式;
(5)利用完全平方公式分解因式;
(6)利用平方差公式分解因式;
(7)先提取公因式xy,再對余下的多項式利用平方差公式繼續(xù)分解;
(8)利用平方差公式分解因式,再利用十字相乘法公式分解因式.
解:(1)a3﹣16a=a(a2﹣16)=a(a+4)(a﹣4);
(2)4ab+1﹣a2﹣4b2=1﹣(﹣4ab+a2+4b2)=1﹣(a﹣2b)2=(1+a﹣2b)(1﹣a+2b);
(3)9(a﹣b)2+12(a2﹣b2)+4(a+b)2=[3(a﹣b)]2+2×3(a﹣b)×2(a+b)+[2(a+b)]2=[3(a﹣b)+2(a+b)]2=(5a﹣b)2;
(4)x2﹣2xy+y2+2x﹣2y+1=(x﹣y)2+2(x﹣y)+1=(x﹣y+1)2;
(5)(x2﹣2x)2+2x2﹣4x+1=(x2﹣2x)2+2(x2﹣2x)+1=(x2﹣2x+1)2=(x﹣1)4;
(6)49(x﹣y)2﹣25(x+y)2=[7(x﹣y)]2﹣[5(x+y)]2=[7(x﹣y)+5(x+y)][7(x﹣y)﹣5(x+y)]=(12x﹣2y)(2x﹣12y)=4(6x﹣y)(x﹣6y);
(7)81x5y5﹣16xy=xy(81x4y4﹣16)=xy(9x2y2+4)(9x2y2﹣4)=xy(9x2y2+4)(3xy+2)(3xy﹣2);
(8)(x2﹣5x)2﹣36=(x2﹣5x+6)(x2﹣5x﹣6)=(x﹣2)(x﹣3)(x﹣6)(x+1).
考點(diǎn):提公因式法與公式法的綜合運(yùn)用.
點(diǎn)評:本題考查了提公因式法與公式法的綜合應(yīng)用,一個多項式有公因式首先提取公因式,然后再用其他方法進(jìn)行因式分解,同時因式分解要徹底,直到不能分解為止.注意一個多項式采取什么方法進(jìn)行因式分解要根據(jù)題目的特點(diǎn)而定,所以要認(rèn)真觀察式子的特點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com