29、如圖,已知點(diǎn)D、E為△ABC的邊BC上兩點(diǎn).AD=AE,BD=CE,為了判斷∠B與∠C的大小關(guān)系,請(qǐng)你填空完成下面的推理過程,并在空白括號(hào)內(nèi)注明推理的依據(jù).
解:過點(diǎn)A作AH⊥BC,垂足為H.
∵在△ADE中,AD=AE(已知)
AH⊥BC(所作)
∴DH=EH(等腰三角形底邊上的高也是底邊上的中線)
又∵BD=CE(已知)
∴BD+DH=CE+EH(等式的性質(zhì))
即:BH=
CH

又∵
AH⊥BC
(所作)
∴AH為線段
BC
的垂直平分線
∴AB=AC(線段垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等)
∠B=∠C
(等邊對(duì)等角)
分析:首先根據(jù)等腰三角形的性質(zhì),得DH=EH,結(jié)合已知條件,根據(jù)等式的性質(zhì),得BH=CH,從而根據(jù)線段垂直平分線的性質(zhì),得AB=AC,再根據(jù)等腰三角形的性質(zhì)即可證明.
解答:解:過點(diǎn)A作AH⊥BC,垂足為H.
∵在△ADE中,AD=AE(已知),
AH⊥BC(所作),
∴DH=EH(等腰三角形底邊上的高也是底邊上的中線).
又∵BD=CE(已知),
∴BD+DH=CE+EH(等式的性質(zhì)),
即:BH=CH.
又∵AH⊥BC(所作),
∴AH為線段BC的垂直平分線.
∴AB=AC(線段垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等).
∴∠B=∠C(等邊對(duì)等角).
點(diǎn)評(píng):此題綜合運(yùn)用了等腰三角形的性質(zhì)、線段垂直平分線的性質(zhì).
等腰三角形底邊上的高、底邊上的中線、頂角的平分線互相重合;等腰三角形的兩個(gè)底角相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)F的坐標(biāo)為(0,1),過點(diǎn)F作一條直線與拋物線y=
14
x2
交于點(diǎn)A和點(diǎn)B,若以線段AB為直徑作圓,則該圓與直線y=-1的位置關(guān)系是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知點(diǎn)P的坐標(biāo)為(2,1),拋物線y=x2沿OP方向平移,頂點(diǎn)B從O點(diǎn)開始平移到P點(diǎn)結(jié)束,設(shè)頂點(diǎn)B的橫坐標(biāo)為m.
精英家教網(wǎng)
(1)用m的代數(shù)式表示點(diǎn)B的坐標(biāo);
(2)設(shè)直線x=2與拋物線交于點(diǎn)A,與x軸交于點(diǎn)F,平移過程中拋物線的對(duì)稱軸交x軸于點(diǎn)E.
①當(dāng)四邊形ABEP是平行四邊形時(shí),求此時(shí)拋物線的解析式;
②探究:當(dāng)m為何值時(shí),以AB為邊的正方形ABCD的頂點(diǎn)C落在坐標(biāo)軸上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)E在面積為4的平行四邊形ABCD的邊上運(yùn)動(dòng),使△ABE的面積為1的點(diǎn)E共有
 
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B的坐標(biāo)為(
3
2
,-2),點(diǎn)P在直線y=-x上運(yùn)動(dòng),當(dāng)|PA-PB|最大時(shí)點(diǎn)P的坐標(biāo)為(  )
A、(2,-2)
B、(4,-4)
C、(
5
2
,-
5
2
D、(5,-5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)F的坐標(biāo)為(3,0),點(diǎn)A、B分別是某函數(shù)圖象與x軸、y軸的交點(diǎn),點(diǎn)P是此圖象上的一動(dòng)點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為x,PF的長為d,且d與x之間滿足關(guān)系:d=5-
3
5
x(0≤x≤5),則結(jié)論:①AF=2;②BF=5;③OA=5;④OB=3,正確結(jié)論的序號(hào)是(  )
A、①②③B、①③
C、①②④D、③④

查看答案和解析>>

同步練習(xí)冊(cè)答案