【題目】實(shí)驗(yàn)室里,水平桌面上有甲、乙兩個(gè)圓柱形容器(容器足夠高),底面半徑之比為1∶2,用一個(gè)管子在甲、乙兩個(gè)容器的15厘米高度處連通(即管子底端離容器底15厘米).已知只有乙容器中有水,水位高2厘米,如圖所示.現(xiàn)同時(shí)向甲、乙兩個(gè)容器注水,平均每分鐘注入乙容器的水量是注入甲容器水量的k倍.開始注水1分鐘,甲容器的水位上升a厘米,且比乙容器的水位低1厘米.其中a,k均為正整數(shù),當(dāng)甲、乙兩個(gè)容器的水位都到達(dá)連通管子的位置時(shí),停止注水.甲容器的水位有2次比乙容器的水位高1厘米,設(shè)注水時(shí)間為t分鐘.
(1)求k的值(用含a的代數(shù)式表示).
(2)當(dāng)甲容器的水位第一次比乙容器的水位高1厘米時(shí),求t的值.
(3)當(dāng)甲容器的水位第二次比乙容器的水位高1厘米時(shí),求a,k,t的值.
【答案】(1)(或);
(2);
(3)
【解析】(1)根據(jù)“開始注水1分鐘,甲容器的水位上升a厘米,且比乙容器的水位低1厘米”,即可得出a、k之間的關(guān)系式,變形后即可得出結(jié)論;
(2)根據(jù)兩容器水位間的關(guān)系列出a、k、t的代數(shù)式,將(1)的結(jié)論代入其內(nèi)整理后即可得出結(jié)論;
(3)由(1)中的k=4﹣結(jié)合a、k均為正整數(shù)即可得出a、k的值,經(jīng)檢驗(yàn)后可得出a、k值合適,再將乙容器內(nèi)水位上升的高度轉(zhuǎn)換成甲容器內(nèi)水位上升的高度結(jié)合水位上升的總高度=單位時(shí)間水位上升的高度×注水時(shí)間即可得出關(guān)于t的一元一次方程,解之即可得出結(jié)論.
解:(1)由題意,得,∴(或)
(2)由題意,得,把代入,
得,化簡,得.
(3)∵,a,k均為正整數(shù),∴,或
又∵, ,∴,或符合題意.
①時(shí), ,解得, .
∴.
②當(dāng)時(shí), ,解得, .
∴.
“點(diǎn)睛”本題考查了一元一次方程中的應(yīng)用以及列代數(shù)式,根據(jù)兩容器半徑及注水量的關(guān)系列出代數(shù)式是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為積極創(chuàng)建全國文明城市,某市對(duì)某路口的行人交通違章情況進(jìn)行了 天的調(diào)查,將所得數(shù)據(jù)繪制成如下統(tǒng)計(jì)圖(圖2不完整):
請(qǐng)根據(jù)所給信息,解答下列問題:
(1)第 天,這一路口的行人交通違章次數(shù)是多少次?這 天中,行人交通違章 次的有多少天?
(2)請(qǐng)把圖2中的頻數(shù)直方圖補(bǔ)充完整;
(3)通過宣傳教育后,行人的交通違章次數(shù)明顯減少.經(jīng)對(duì)這一路口的再次調(diào)查發(fā)現(xiàn),平均每天的行人交通違章次數(shù)比第一次調(diào)查時(shí)減少了 次,求通過宣傳教育后,這一路口平均每天還出現(xiàn)多少次行人的交通違章?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,在BC上分別取點(diǎn)M、N,使MN=NA,若∠BAM=∠NAC,則∠MAC=_________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初二年級(jí)教師對(duì)試卷講評(píng)課中學(xué)生參與情況進(jìn)行調(diào)查,調(diào)查項(xiàng)目分為主動(dòng)質(zhì)疑、獨(dú)立思考、專注聽講、講解題目四項(xiàng).調(diào)查組隨機(jī)抽取了若干名初中學(xué)生的參與情況,繪制了如圖所示的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖(均不完整),請(qǐng)根據(jù)圖中所給信息解答下列問題:
(1)在扇形統(tǒng)計(jì)圖中,項(xiàng)目“主動(dòng)質(zhì)疑”所在的扇形的圓心角的度數(shù)為______度;
(2)請(qǐng)將頻數(shù)分布直方圖補(bǔ)充完整;
(3)如果全市有6000名初三學(xué)生,那么在試卷評(píng)講課中,“獨(dú)立思考”的初二學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上A,B兩點(diǎn)對(duì)應(yīng)的有理數(shù)分別為xA=﹣5和xB=6,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度沿?cái)?shù)軸在A,B之間往返運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個(gè)單位的速度沿?cái)?shù)軸在B,A之間往返運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t=2時(shí),點(diǎn)P對(duì)應(yīng)的有理數(shù)xP=______,PQ=______;
(2)當(dāng)0<t≤11時(shí),若原點(diǎn)O恰好是線段PQ的中點(diǎn),求t的值;
(3)我們把數(shù)軸上的整數(shù)對(duì)應(yīng)的點(diǎn)稱為“整點(diǎn)”,當(dāng)P,Q兩點(diǎn)第一次在整點(diǎn)處重合時(shí),直接寫出此整點(diǎn)對(duì)應(yīng)的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某收費(fèi)站在2小時(shí)內(nèi)對(duì)經(jīng)過該站的機(jī)動(dòng)車統(tǒng)計(jì)如下:
類型 | 轎車 | 貨車 | 客車 | 其他 |
數(shù)量(輛) | 36 | 24 | 8 | 12 |
若有一輛機(jī)動(dòng)車將經(jīng)過這個(gè)收費(fèi)站,利用上面的統(tǒng)計(jì)估計(jì)它是轎車的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,共有12個(gè)大小相同的小正方形,其中陰影部分的5個(gè)小正方形是一個(gè)正方體的表面展開圖的一部分,現(xiàn)從其余的小正方形中任取一個(gè)涂上陰影,能構(gòu)成這個(gè)正方體的表面展開圖的概率是( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com