分析 (1)利用菱形對角線互相垂直平分和勾股定理計(jì)算可得AB的長;
(2)易證四邊形OCBD是平行四邊形,再由∠BOC=90°,即可證明四邊形OBEC為矩形
解答 (1)解:
∵四邊形ABCD是菱形,
∴AC⊥BD,AO=$\frac{1}{2}$AC,BO=$\frac{1}{2}$BD,
∵AC=8,BD=6,
∴AO=4,BO=3,
∴AB=$\sqrt{{3}^{2}+{4}^{2}}$=5;
(2)∵BE∥AC,CE∥BD,
∴四邊形OCBD為平行四邊形,
∵∠BOC=90°,
∴四邊形OBCE為矩形.
點(diǎn)評 本題考查了菱形的性質(zhì)、平行四邊形的判定和性質(zhì)以及矩形的性質(zhì),熟記各種特殊四邊形的判定方法和性質(zhì)以及勾股定理是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 直線比射線長 | |
B. | 如果線段AB=BC,那么點(diǎn)B是線段AC的中點(diǎn) | |
C. | 垂線段最短 | |
D. | 連接兩點(diǎn)的線段叫兩點(diǎn)的距離 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com