【題目】如圖,△ABC中,DE是BC的垂直平分線(xiàn),DE交AC于點(diǎn)E,連接BE.若BE=9,BC=12,則cosC=

【答案】
【解析】∵DE是BC的垂直平分線(xiàn),∴CE=BE,∴CD=BD,∵BE=9,BC=12,∴CD=6,CE=9,∴cosC===,所以答案是
【考點(diǎn)精析】本題主要考查了線(xiàn)段垂直平分線(xiàn)的性質(zhì)和解直角三角形的相關(guān)知識(shí)點(diǎn),需要掌握垂直于一條線(xiàn)段并且平分這條線(xiàn)段的直線(xiàn)是這條線(xiàn)段的垂直平分線(xiàn);線(xiàn)段垂直平分線(xiàn)的性質(zhì)定理:線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等;解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)道路管理規(guī)定,在賀州某段筆直公路上行駛的車(chē)輛,限速40千米/時(shí),已知交警測(cè)速點(diǎn)M到該公路A點(diǎn)的距離為米,∠MAB=45°,∠MBA=30°(如圖所示),現(xiàn)有一輛汽車(chē)由A往B方向勻速行駛,測(cè)得此車(chē)從A點(diǎn)行駛到B點(diǎn)所用的時(shí)間為3秒.

(1)求測(cè)速點(diǎn)M到該公路的距離;
(2)通過(guò)計(jì)算判斷此車(chē)是否超速.(參考數(shù)據(jù):≈1.41,≈1.73,≈2.24)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A為某旅游景區(qū)的最佳觀(guān)景點(diǎn),游客可從B處乘坐纜車(chē)先到達(dá)小觀(guān)景平臺(tái)DE觀(guān)景,然后再由E處繼續(xù)乘坐纜車(chē)到達(dá)A處,返程時(shí)從A處乘坐升降電梯直接到達(dá)C處,已知:AC⊥BC于C,DE∥BC,BC=110米,DE=9米,BD=60米,α=32°,β=68°,求AC的高度.(參考數(shù)據(jù):sin32°≈0.53;cos32°≈0.85;tan32°≈0.62;sin68°≈0.93;cos68°≈0.37;tan68°≈2.48)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)y=ax2+bx+3的對(duì)稱(chēng)軸是直線(xiàn)x=1.
(1)求證:2a+b=0
(2)若關(guān)于x的方程ax2+bx﹣8=0的一個(gè)根為4,求方程的另一個(gè)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:|2﹣|+2sin60°+-

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知反比例函數(shù)y=的圖象的一支位于第一象限.

(1)判斷該函數(shù)圖象的另一支所在的象限,并求m的取值范圍;
(2)如圖,O為坐標(biāo)原點(diǎn),點(diǎn)A在該反比例函數(shù)位于第一象限的圖象上,點(diǎn)B與點(diǎn)A關(guān)于x軸對(duì)稱(chēng),若△OAB的面積為6,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在水平地面上豎立著一面墻AB,墻外有一盞路燈D.光線(xiàn)DC恰好通過(guò)墻的最高點(diǎn)B,且與地面形成37°角.墻在燈光下的影子為線(xiàn)段AC,并測(cè)得AC=5.5米.

(1)求墻AB的高度(結(jié)果精確到0.1米);(參考數(shù)據(jù):tan37°≈0.75,sin37°≈0.60,cos37°≈0.80)
(2)如果要縮短影子AC的長(zhǎng)度,同時(shí)不能改變墻的高度和位置,請(qǐng)你寫(xiě)出兩種不同的方法

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么一次函數(shù)y=bx+c和反比例函數(shù)y=在同一坐標(biāo)系中的圖象大致是( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】理解:數(shù)學(xué)興趣小組在探究如何求tan15°的值,經(jīng)過(guò)思考、討論、交流,得到以下思路:
思路一 如圖1,在Rt△ABC中,∠C=90°,∠ABC=30°,延長(zhǎng)CB至點(diǎn)D,使BD=BA,連接AD.設(shè)AC=1,則BD=BA=2,BC=.tanD=tan15°===2﹣
思路二 利用科普書(shū)上的和(差)角正切公式:tan(α±β)=.假設(shè)α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)===2﹣
思路三 在頂角為30°的等腰三角形中,作腰上的高也可以…
思路四 …
請(qǐng)解決下列問(wèn)題(上述思路僅供參考).

(1)類(lèi)比:求出tan75°的值;
(2)應(yīng)用:如圖2,某電視塔建在一座小山上,山高BC為30米,在地平面上有一點(diǎn)A,測(cè)得A,C兩點(diǎn)間距離為60米,從A測(cè)得電視塔的視角(∠CAD)為45°,求這座電視塔CD的高度;

(3)拓展:如圖3,直線(xiàn)y=x﹣1與雙曲線(xiàn)y=交于A,B兩點(diǎn),與y軸交于點(diǎn)C,將直線(xiàn)AB繞點(diǎn)C旋轉(zhuǎn)45°后,是否仍與雙曲線(xiàn)相交?若能,求出交點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案