【題目】如圖1,點O為直線AB上一點,過O點作射線OC,使,將一直角三角板的直角頂點放在點O處,一邊ON在射線OA上,另一邊OM在直線AB的下方.
(1)將圖1中的三角板繞點O按逆時針方向旋轉(zhuǎn)至圖2的位置,使得ON落在射線OB上,此時三角板旋轉(zhuǎn)的角度為______度;
(2)在(1)旋轉(zhuǎn)過程中,當(dāng)旋轉(zhuǎn)至圖3的位置時,使得OM在∠BOC的內(nèi)部,ON落在直線AB下方,試探究∠COM與∠BON之間滿足什么等量關(guān)系,并說明理由.
【答案】(1);(2),理由見解析
【解析】
(1)根據(jù)OM的初始位置和旋轉(zhuǎn)后在圖2的位置進行分析;
(2)依據(jù)已知先計算出∠BOC=135°,則∠MOB=135°-MOC,根據(jù)∠BON與∠MOB互補,則可用∠MOC表示出∠BON,從而發(fā)現(xiàn)二者之間的等量關(guān)系.
(1)OM由初始位置旋轉(zhuǎn)到圖2位置時,在一條直線上,所以旋轉(zhuǎn)了180°.
故答案為180;
(2)∵∠AOC:∠BOC=1:3,
∴∠BOC=180°×=135°.
∵∠MOC+∠MOB=135°,
∴∠MOB=135°∠MOC.
∴∠BON=90°∠MOB=90°(135°∠MOC)=∠MOC45°.
即.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在中,.若將繞點順時針旋轉(zhuǎn)至Δ,使射線與射線相交于點(不與、重合).
(1)如圖(1),若,則 ;
(2)如圖(2),連結(jié),若,試求出的度數(shù);
(3)請?zhí)骄?/span>與之間所滿足的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的證明:
已知:如圖,∠AED=∠C,∠DEF=∠B.求證:∠1=∠2.
證明:∵∠AED=∠C(已知),
∴ ∥ ( ),
∴∠B+∠BDE=180°( ),
∵∠DEF=∠B(已知),
∴∠DEF+∠BDE=180°(等量代換),
∴ ∥ ( ),
∴ ∠1=∠2( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,半徑為1的⊙A的圓心與坐標(biāo)原點O重合,線段BC的端點分別在x軸與y軸上,點B的坐標(biāo)為(6,0),且sin∠OCB= .
(1)若點Q是線段BC上一點,且點Q的橫坐標(biāo)為m.
①求點Q的縱坐標(biāo);(用含m的代數(shù)式表示)
②若點P是⊙A上一動點,求PQ的最小值;
(2)若點A從原點O出發(fā),以1個單位/秒的速度沿折線OBC運動,到點C運動停止,⊙A隨著點A的運動而移動.
①點A從O→B的運動的過程中,若⊙A與直線BC相切,求t的值;
②在⊙A整個運動過程中,當(dāng)⊙A與線段BC有兩個公共點時,直接寫出t滿足的條件.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠袒蚍匠探M:
(1)5-x=18
(2)4x+3=2(x-1)+1
(3)
(4)
(5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:問題:某班在購買啦啦操比賽的物資時,準(zhǔn)備購買紅色、黃色,藍色三種顏色的啦啦球,其顏色不同則價格不同,第一次買了15個紅色啦啦球、7個黃色啦啦球、11個藍色啦啦球共用1084元,第二次買了2個紅色啦啦球、4個黃色啦啦球、3個藍色啦啦球共用304元,試問第三次買了紅、黃、藍啦啦球各一個共需多少元?(假定三次購買紅、黃、藍啦啦球單價不變)
解:設(shè)購買紅、黃、藍啦啦球的單價分別為x、y、z元,依題意得:
上述方程組可變形為:
設(shè)x+y+z=m,2x+z=n,上述方程組又可化為:
①+4×②得:m= ,即x+y+z= ;
答:第三次購買紅、黃、藍啦啦球各一個共需 元.
閱讀后,細心的你,可以解決下列問題:
某同學(xué)買13支黑筆、5支紅筆、9個筆記本,共用去92.5元:如果買2支黑筆、4支紅筆、3個筆記本,則共用去32元,試問只買一支黑筆、一支紅筆、一個筆記本,共需多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是等邊三角形,點D、E分別在AC、BC上,且CD=BE,
(1)求證:△ABE≌△BCD;
(2)求出∠AFB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交AC與E,交BC與D.
(1)D是BC的中點;
(2)△BEC∽△ADC;
(3)若 ,求⊙O的半徑。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠BAC=30°,E為AB邊的中點,以BE為邊作等邊△BDE,連接AD、CD.
(1)求證:AD=CD;
(2)①畫圖:在AC邊上找一點H,使得BH+EH最。ㄒ螅簩懗鲎鲌D過程并畫出圖形,不用說明作圖依據(jù));
②當(dāng)BC=2時,求出BH+EH的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com