根據(jù)對北京市相關的市場物價調(diào)研,預計進入夏季后的某一段時間,某批發(fā)市場內(nèi)的甲種蔬菜的銷售利潤y1(千元)與進貨量x(噸)之間的函數(shù)y1=kx的圖象如圖①所示,乙種蔬菜的銷售利潤y2(千元)與進貨量x(噸)之間的函數(shù)的圖象如圖②所示.

(1)分別求出y1、y2與x之間的函數(shù)關系式;
(2)如果該市場準備進甲、乙兩種蔬菜共10噸,設乙種蔬菜的進貨量為t噸,寫出這兩種蔬菜所獲得的銷售利潤之和W(千元)與t(噸)之間的函數(shù)關系式,并求出這兩種蔬菜各進多少噸時獲得的銷售利潤之和最大,最大利潤是多少?
【答案】分析:(1)把(5,3)代入正比例函數(shù)即可求得k的值也就求得了y1的關系式;把原點及(1,2),(5,6)代入即可求得y2的關系式;
(2)銷售利潤之和W=甲種蔬菜的利潤+乙種蔬菜的利潤,利用配方法求得二次函數(shù)的最值即可.
解答:解:(1)由題意得:5k=3,
解得k=0.6,
∴y1=0.6x;
,
解得:
∴y2=-0.2x2+2.2x;

(2)W=0.6(10-t)+(-0.2t2+2.2t)=-0.2t2+1.6t+6=-0.2(t-4)2+9.2.
所以甲種蔬菜進貨量為6噸,乙種蔬菜進貨量為4噸時,獲得的銷售利潤之和最大,最大利潤是9200元.
點評:考查二次函數(shù)的應用;得到甲乙兩種商品的利潤是解決本題的突破點;得到總利潤的關系式是解決本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•朝陽區(qū)一模)根據(jù)對北京市相關的市場物價調(diào)研,預計進入夏季后的某一段時間,某批發(fā)市場內(nèi)的甲種蔬菜的銷售利潤y1(千元)與進貨量x(噸)之間的函數(shù)y1=kx的圖象如圖①所示,乙種蔬菜的銷售利潤y2(千元)與進貨量x(噸)之間的函數(shù)y2=ax2+bx的圖象如圖②所示.

(1)分別求出y1、y2與x之間的函數(shù)關系式;
(2)如果該市場準備進甲、乙兩種蔬菜共10噸,設乙種蔬菜的進貨量為t噸,寫出這兩種蔬菜所獲得的銷售利潤之和W(千元)與t(噸)之間的函數(shù)關系式,并求出這兩種蔬菜各進多少噸時獲得的銷售利潤之和最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

根據(jù)對北京市相關的市場物價調(diào)研,預計進入夏季后的某一段時間,某批發(fā)市場內(nèi)的
甲種蔬菜的銷售利潤y1(千元)與進貨量x(噸)之間的函數(shù)的圖象如圖①所示,乙種蔬菜的銷售利潤y2(千元)與進貨量x(噸)之間的函數(shù)的圖象如圖②所示.
(1)分別求出y1、y2x之間的函數(shù)關系式;
(2)如果該市場準備進甲、乙兩種蔬菜共10噸,設乙種蔬菜的進貨量為t噸,寫出這兩種蔬菜所獲得的銷售利潤之和W(千元)與t(噸)之間的函數(shù)關系式,并求出這兩種蔬菜各進多少噸時獲得的銷售利潤之和最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年北京市朝陽區(qū)中考一模數(shù)學卷(帶解析) 題型:解答題

根據(jù)對北京市相關的市場物價調(diào)研,預計進入夏季后的某一段時間,某批發(fā)市場內(nèi)的
甲種蔬菜的銷售利潤y1(千元)與進貨量x(噸)之間的函數(shù)的圖象如圖①所示,乙種蔬菜的銷售利潤y2(千元)與進貨量x(噸)之間的函數(shù)的圖象如圖②所示.
(1)分別求出y1、y2x之間的函數(shù)關系式;
(2)如果該市場準備進甲、乙兩種蔬菜共10噸,設乙種蔬菜的進貨量為t噸,寫出這兩種蔬菜所獲得的銷售利潤之和W(千元)與t(噸)之間的函數(shù)關系式,并求出這兩種蔬菜各進多少噸時獲得的銷售利潤之和最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

 根據(jù)對北京市相關的市場物價調(diào)研,預計進入夏季后的某一段時間,某批發(fā)市場內(nèi)的

甲種蔬菜的銷售利潤y1(千元)與進貨量x(噸)之間的函數(shù)的圖象如圖①所示,乙種蔬菜的銷售利潤y2(千元)與進貨量x(噸)之間的函數(shù)的圖象如圖②所示.

(1)分別求出y1、y2x之間的函數(shù)關系式;

(2)如果該市場準備進甲、乙兩種蔬菜共10噸,設乙種蔬菜的進貨量為t噸,寫出這兩種蔬菜所獲得的銷售利潤之和W(千元)與t(噸)之間的函數(shù)關系式,并求出這兩種蔬菜各進多少噸時獲得的銷售利潤之和最大,最大利潤是多少?

 

 

 

 

【解析】(1)y1=kx的圖象過點(3,5.),求出k,y2=ax2+bx的圖象過點(1,2),(5,6) 求出a,b

(2)由等量關系“兩種蔬菜所獲得的銷售利潤之和=甲種蔬菜的銷售利潤+乙種蔬菜的銷售利潤”即可列出函數(shù)關系式;

用配方法化簡函數(shù)關系式即可求出w的最大值.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年浙江省杭州市錦繡?育才教育機構九年級(上)月考數(shù)學試卷(10月份)(解析版) 題型:解答題

根據(jù)對北京市相關的市場物價調(diào)研,預計進入夏季后的某一段時間,某批發(fā)市場內(nèi)的甲種蔬菜的銷售利潤y1(千元)與進貨量x(噸)之間的函數(shù)y1=kx的圖象如圖①所示,乙種蔬菜的銷售利潤y2(千元)與進貨量x(噸)之間的函數(shù)的圖象如圖②所示.

(1)分別求出y1、y2與x之間的函數(shù)關系式;
(2)如果該市場準備進甲、乙兩種蔬菜共10噸,設乙種蔬菜的進貨量為t噸,寫出這兩種蔬菜所獲得的銷售利潤之和W(千元)與t(噸)之間的函數(shù)關系式,并求出這兩種蔬菜各進多少噸時獲得的銷售利潤之和最大,最大利潤是多少?

查看答案和解析>>

同步練習冊答案