二次函數(shù)y=ax2+bx+c的部分圖象如圖所示,其中圖象與x軸交于點(diǎn)A(-1,0),與y軸交于點(diǎn)C(0,-5),且經(jīng)過點(diǎn)D(3,-8).
(1)求此二次函數(shù)的解析式;
(2)將此二次函數(shù)的解析式寫成y=a(x-h)2+k的形式,并直接寫出此二次函數(shù)圖象的頂點(diǎn)坐標(biāo)以及它與x軸的另一個(gè)交點(diǎn)B的坐標(biāo).
(1)根據(jù)題意得,
a-b+c=0①
c=-5②
9a+3b+c=-8③
,
②分別代入①、③得,
a-b=5④,
3a+b=-1⑤,
④+⑤得,4a=4,
解得a=1,
把a(bǔ)=1代入④得,1-b=5,
解得b=-4,
∴方程組的解是
a=1
b=-4
c=-5
,
∴此二次函數(shù)的解析式為y=x2-4x-5;

(2)y=x2-4x-5=x2-4x+4-4-5=(x-2)2-9,
二次函數(shù)的解析式為y=(x-2)2-9,
頂點(diǎn)坐標(biāo)為(2,-9),
對(duì)稱軸為x=2,
設(shè)另一點(diǎn)坐標(biāo)為B(a,0),
則-1+a=2×2,
解得a=5,
∴點(diǎn)B的坐標(biāo)是B(5,0).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:矩形OABC中,A(6,0),B(6,4),F(xiàn)為AB邊的中點(diǎn),直線EF交邊BC于E,且sin∠BEF=
5
5
,P為線段EF上一動(dòng)點(diǎn),PM⊥OA于M,PN⊥OC于N.
(1)求直線EF的函數(shù)解析式并注明自變量取值范圍;
(2)求矩形ONPM的面積的最大值及此時(shí)點(diǎn)P的坐標(biāo);
(3)矩形ONPM、矩形OABC有可能相似嗎?若相似,求出此時(shí)點(diǎn)P的坐標(biāo);若不相似,請(qǐng)簡(jiǎn)要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

二次函數(shù)y=x2+bx+c的圖象與y軸的負(fù)半軸相交于點(diǎn)C(0,-3)與x軸正半軸相交于點(diǎn)B,且OB=OC.
①求B點(diǎn)坐標(biāo);
②求函數(shù)的解析式及最小值;
③寫出y隨x的增大而減小的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖①,點(diǎn)A′,B′的坐標(biāo)分別為(2,0)和(0,-4),將△A′B′O繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)90°后得△ABO,點(diǎn)A′的對(duì)應(yīng)點(diǎn)是點(diǎn)A,點(diǎn)B′的對(duì)應(yīng)點(diǎn)是點(diǎn)B.
(1)寫出A,B兩點(diǎn)的坐標(biāo),并求出直線AB的解析式;
(2)將△ABO沿著垂直于x軸的線段CD折疊,(點(diǎn)C在x軸上,點(diǎn)D在AB上,點(diǎn)D不與A,B重合)如圖②,使點(diǎn)B落在x軸上,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)E.設(shè)點(diǎn)C的坐標(biāo)為(x,0),△CDE與△ABO重疊部分的面積為S.
①試求出S與x之間的函數(shù)關(guān)系式(包括自變量x的取值范圍);
②當(dāng)x為何值時(shí),S的面積最大,最大值是多少?
③是否存在這樣的點(diǎn)C,使得△ADE為直角三角形?若存在,直接寫出點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

(1)將拋物線y1=2x2向右平移2個(gè)單位,得到拋物線y2的圖象,則y2=______;
(2)如圖,P是拋物線y2對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),直線x=t平行于y軸,分別與直線y=x、拋物線y2交于點(diǎn)A、B.若△ABP是以點(diǎn)A或點(diǎn)B為直角頂點(diǎn)的等腰直角三角形,求滿足條件的t的值,則t=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a≠0)的圖象經(jīng)過M(1,0)和N(3,0)兩點(diǎn),且與y軸交于D(0,3),直線l是拋物線的對(duì)稱軸.
(1)求該拋物線的解析式.
(2)若過點(diǎn)A(-1,0)的直線AB與拋物線的對(duì)稱軸和x軸圍成的三角形面積為6,求此直線的解析式.
(3)點(diǎn)P在拋物線的對(duì)稱軸上,⊙P與直線AB和x軸都相切,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,點(diǎn)E(x1,y1)、F(x2,y2)在拋物線y=ax2+bx+c的對(duì)稱軸的同側(cè)(點(diǎn)E在點(diǎn)F的左側(cè)),過點(diǎn)E、F分別作x軸的垂線,分別交x軸于點(diǎn)B、D,交直線y=2ax+b于點(diǎn)A、C,設(shè)S為直線AB、CD與x軸、直線y=2ax+b所圍成圖形的面積.則S與y1、y2的數(shù)量關(guān)系式為:S=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

定義[p,q]為一次函數(shù)y=px+q的特征數(shù).
(1)若特征數(shù)是[2,k-2]的一次函數(shù)為正比例函數(shù),求k的值;
(2)設(shè)點(diǎn)A,B分別為拋物線y=(x+m)(x-2)與x,y軸的交點(diǎn),其中m>0,且△OAB的面積為4,O為原點(diǎn),求圖象過A,B兩點(diǎn)的一次函數(shù)的特征數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某蔬菜基地種植西紅柿,由歷年市場(chǎng)行情得知,從二月一日起的300天內(nèi),西紅柿的市場(chǎng)售價(jià)與上市時(shí)間的關(guān)系用圖一的一條折線表示;西紅柿的種植成本與上市時(shí)間的關(guān)系用圖二的拋物線段表示.

(1)寫出圖一表示的市場(chǎng)售價(jià)與時(shí)間的函數(shù)關(guān)系式P;寫出圖二表示的種植成本與時(shí)間的函數(shù)關(guān)系式Q;
(2)認(rèn)定市場(chǎng)售價(jià)減去種植成本為純收益,問何時(shí)上市的西紅柿純收益最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案