【題目】為了鼓勵市民節(jié)約用水,某市水費實行分段計費制,每戶每月用水量在規(guī)定用量及以下的部分收費標準相同,超出規(guī)定用量的部分收費標準相同.例如:若規(guī)定用量為10噸,每月用水量不超過10噸按1.5/噸收費,超出10噸的部分按2/噸收費,則某戶居民一個月用水8噸,則應(yīng)繳水費:8×1.5=12(元);某戶居民一個月用水13噸,則應(yīng)繳水費:10×1.5+(13﹣10)×2=21(元).

表是小明家14月份用水量和繳納水費情況,根據(jù)表格提供的數(shù)據(jù),回答:

月份

用水量(噸)

6

7

12

15

水費(元)

12

14

28

37

(1)該市規(guī)定用水量為   噸,規(guī)定用量內(nèi)的收費標準是   /噸,超過部分的收費標準是   /噸.

(2)若小明家五月份用水20噸,則應(yīng)繳水費   元.

(3)若小明家六月份應(yīng)繳水費46元,則六月份他們家的用水量是多少噸?

【答案】(1)8,2,3;(2)52;(3)18噸.

【解析】試題分析:1)根據(jù)12月份的條件,當用水量不超過8噸時,每噸的收費2元.根據(jù)3月份的條件,用水12噸,其中8噸應(yīng)交16元,則超過的4噸收費12元,則超出8噸的部分每噸收費3元.

2)根據(jù)求出的繳費標準,則用水20噸應(yīng)繳水費就可以算出;

3)根據(jù)相等關(guān)系:8噸的費用16+超過部分的費用=46元,列方程求解可得.

解:(1)由表可知,規(guī)定用量內(nèi)的收費標準是2/噸,超過部分的收費標準為=3/噸,

設(shè)規(guī)定用水量為a噸,

2a+3(12﹣a)=28,

解得:a=8,

即規(guī)定用水量為8噸,

故答案為:8,2,3;

(2)由(1)知,若小明家五月份用水20噸,則應(yīng)繳水費為8×2+3×(20﹣8)=52元,

故答案為:52;

(3)2×8=1646,

∴六月份的用水量超過8噸,

設(shè)用水量為x噸,

2×8+3(x﹣8)=46,

解得:x=18,

∴六月份的用水量為18噸.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電視臺用如下圖所示的圖像向觀察描繪了一周之內(nèi)日平均溫度的變化情況:

1)這一周哪一天的日平均溫度最低?大約是多少度?哪一天的平均溫度最高?大約是多少度?你能用有序數(shù)對分別表示它們嗎?

214、15、16日的日平均溫度有什么關(guān)系?

3)說一說這一周日平均溫度是怎樣變化的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a>b,則下列不等式成立的是(
A.a﹣c>b﹣c
B.a+c<b+c
C.ac>bc
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的面積為40,AD為△ABC的中線,BD=5,BE為△ABD的中線, EF⊥BC,則點E到BC邊的距離為(

A.2
B.3
C.4
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“二廣”高速在益陽境內(nèi)的建設(shè)正在緊張地進行,現(xiàn)有大量的沙石需要運輸.“益安”車隊有載重量為8噸、10噸的卡車共12輛,全部車輛運輸一次能運輸110噸沙石.
(1)求“益安”車隊載重量為8噸、10噸的卡車各有多少輛?
(2)隨著工程的進展,“益安”車隊需要一次運輸沙石165噸以上,為了完成任務(wù),準備新增購這兩種卡車共6輛,車隊有多少種購買方案,請你一一寫出.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個直角三角形紙片,剪去直角后,得到一個四邊形,則∠1+∠2=度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】全等圖形是相似比為1的相似圖形,因此全等是特殊的相似,我們可以由研究全等三角形的思路,提出相似三角形的問題和研究方法.這種其中主要利用的數(shù)學(xué)方法是(

A.代入法B.列舉法C.從特殊到一般D.反證法

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠BAC=90°,AB=AC,D點在AC上,E點在BA的延長線上,BD=CE,BD的延長線交CE于F.證明:

(1)AD=AE
(2)BF⊥CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD為△ABC的中線,BE為三角形ABD中線,

(1)∠ABE=15°,∠BAD=35°,求∠BED的度數(shù);
(2)在△BED中作BD邊上的高;
(3)若△ABC的面積為60,BD=5,則點E到BC邊的距離為多少?

查看答案和解析>>

同步練習(xí)冊答案