如圖,OP平分∠MON,PA⊥ON于點A,點Q是射線OM上的一個動點,若PA=2,則PQ范圍是   
【答案】分析:由OP平分∠MON,PA⊥ON于點A,PA=2,根據(jù)角平分線的性質(zhì)得到點P到OM的距離等于2,再根據(jù)直線外一點與直線上所有點的連線段中垂線段最短即可得到PQ≥2.
解答:解:∵OP平分∠MON,PA⊥ON于點A,PA=2,
∴點P到OM的距離等于2,
而點Q是射線OM上的一個動點,
∴PQ≥2.
故答案為PQ≥2.
點評:本題考查了角平分線的性質(zhì):角平分線上的點到角的兩邊的距離相等.也考查了垂線段最短.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

7、如圖,P為∠AOB的平分線OC上任意一點,PM⊥OA于M,PN⊥OB于N,連接MN交OP于點D、則①PM=PN,②MO=NO,③OP⊥MN,④MD=ND、其中正確的有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如圖,P為∠AOB的平分線OC上任意一點,PM⊥OA于M,PN⊥OB于N,連接MN交OP于點D.則①PM=PN,②MO=NO,③OP⊥MN,④MD=ND.其中正確的有


  1. A.
    1個
  2. B.
    2個
  3. C.
    3個
  4. D.
    4個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,P為∠AOB的平分線OC上任意一點,PM⊥OA于M,PN⊥OB于N,連接MN交OP于點D.則①PM=PN,②MO=NO,③OP⊥MN,④MD=ND.其中正確的有( 。
A.1個B.2個C.3個D.4個
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:月考題 題型:單選題

如圖,P為∠AOB的平分線OC上任意一點,PM⊥OA于M,PN⊥OB于N,連接MN 交OP于點D.則①PM=PN,②MO=ON,③OP⊥MN,④MD=ND.其中正確的有

A. 1個
B. 2個
C.3個
D.4個

查看答案和解析>>

同步練習冊答案