【題目】如圖,ABC的邊AB、AC的垂直平分線相交于點P.連接PB、PC,若∠A=70°,則∠PBC的度數(shù)是 ______

【答案】20°

【解析】

連接AP,由MP為線段AB的垂直平分線,根據(jù)垂直平分線的性質(zhì)可得AP=BP,同理可得AP=CP,等量代換可得AP=BP=CP,然后根據(jù)等邊對等角可得∠ABP=BAP,∠PAC=ACP及∠PBC=PCB,由已知的∠BAC的度數(shù)求出∠BAP+CAP的度數(shù),等量代換可得∠ABP+ACP的度數(shù),同時根據(jù)三角形的內(nèi)角和定理可得∠ABP+PBC+PCB+ACP=110°,進而得到∠PBC+PCB的度數(shù),再根據(jù)兩角相等,即可求出所求角的度數(shù).

連接AP,如圖所示:

MP為線段AB的垂直平分線,

AP=BP,

∴∠ABP=BAP,

PN為線段AC的垂直平分線,

AP=CP,

∴∠PAC=ACP,

BP=CP,

∴∠PBC=PCB

又∠BAC=BAP+CAP=70°,

∴∠ABP+ACP=70°,且∠ABP+PBC+PCB+ACP=110°,

∴∠PBC+PCB=40°,

則∠PBC=PCB=20°.

故答案為:20°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】(10分)某商場用2500元購進了A、B兩種新型節(jié)能臺燈共50盞,這兩種臺燈的進價,標價如下表所示:

(1)這兩種臺燈各購進多少盞?

(2)若A型臺燈按標價的九折出售,B型臺燈按標價的八折出售,那么這批臺燈全部售完后,商場共獲利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A、C的坐標分別為,,,點PBC(不與點BC重合)上運動,當△ODP是腰長為5的等腰三角形時,點P的坐標為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在矩形ABCD中,點E在邊BC上,BE=2CE,將矩形沿著過點E的直線翻折后,點C,D分別落在邊BC下方的點C′,D′且點C′,D′,B在同一條直線上,折痕與邊AD交于點F,D′F與BE交于點G. AB=5時,△EFG的周長為_________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著近幾年我市私家車日越增多,超速行駛成為引發(fā)交通事故的主要原因之一.某中學數(shù)學活動小組為開展“文明駕駛、關(guān)愛家人、關(guān)愛他人”的活動,設(shè)計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點P,在筆直的車道m(xù)上確定點O,使PO和m垂直,測得PO的長等于21米,在m上的同側(cè)取點A、B,使∠PAO=30°,∠PBO=60°.

(1)求A、B之間的路程(保留根號);

(2)已知本路段對校車限速為12米/秒若測得某校車從A到B用了2秒,這輛校車是否超速?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一條直線過點(0,4),且與拋物線y=x2交于A,B兩點,其中點A的橫坐標是-2.

(1)求這條直線的解析式及點B的坐標;

(2)在x軸上是否存在點C,使得△ABC是直角三角形?若存在,求出點C的坐標,若不存在,請說明理由;

(3)過線段AB上一點P,作PM∥x軸,交拋物線于點M,點M在第一象限,點N(0,1),當點M的橫坐標為何值時,MN+3MP的長度最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)閱讀理解:

如圖①,在ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.

解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE(或?qū)?/span>ACD繞著點D逆時針旋轉(zhuǎn)180°得到EBD),把AB、AC,2AD集中在ABE中,利用三角形三邊的關(guān)系即可判斷.

中線AD的取值范圍是 ;

(2)問題解決:

如圖②,在ABC中,D是BC邊上的中點,DEDF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證:BE+CFEF;

(3)問題拓展:

如圖③,在四邊形ABCD中,B+D=180°,CB=CD,BCD=140°,以為頂點作一個70°角,角的兩邊分別交AB,AD于E、F兩點,連接EF,探索線段BE,DF,EF之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】蚌埠一帶一路國際龍舟邀請賽期間,小青所在學校組織了一次龍舟故事知多少比賽,小青從全體學生中隨機抽取部分同學的分數(shù)(得分取正整數(shù),滿分為100)進行統(tǒng)計.以下是根據(jù)抽取同學的分數(shù)制作的不完整的頻率分布表和頻率分布直方圖,請根據(jù)圖表,回答下列問題: :

組別

分組

頻數(shù)

頻率

1

9

0.18

2

3

21

0.42

4

0.06

5

2

(1)根據(jù)上表填空: __=. ,= .

(2)若小青的測試成績是抽取的同學成績的中位數(shù),那么小青的測試成績在什么范圍內(nèi)?

(3)若規(guī)定:得分在的為優(yōu)秀,若小青所在學校共有600名學生,從本次比賽選取得分為優(yōu)秀的學生參加決賽,請問共有多少名學生被選拔參加決賽?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點是直角三角形斜邊上一動點(不與點,重合),作直線,分別過點,向直線作垂線,垂足分別為為斜邊的中點.

1)如圖1,當點與點重合時,的位置關(guān)系是______,的數(shù)量關(guān)系是______

2)如圖2,當點在線段上(不與點重合)時,試猜想的數(shù)量關(guān)系,并說明理由;

3)如圖3,當點在線段的延長線上時,此時(2)中的結(jié)論是否仍成立?請說明理由.

查看答案和解析>>

同步練習冊答案