如圖,正方形ABCD中,E、F是對(duì)角線AC上兩點(diǎn),連接BE、BF、DE、DF,則添加下列條件①∠ABE=∠CBF;②AE=CF;③AB=AF;④BE=BF.可以判定四邊形BEDF是菱形的條件有


  1. A.
    1個(gè)
  2. B.
    2個(gè)
  3. C.
    3個(gè)
  4. D.
    4個(gè)
C
分析:根據(jù)正方形的四條邊都相等,對(duì)角線互相垂直平分且每一條對(duì)角線平分一組對(duì)角的性質(zhì),再加上各選項(xiàng)的條件,對(duì)各選項(xiàng)分析判斷后再計(jì)算正確選項(xiàng)的個(gè)數(shù).
解答:解:連接BD,交AC于點(diǎn)O,
在正方形ABCD中,AB=BC,∠BAC=∠ACB,AC⊥BD,
①在△ABE與△BCF中,
,
∴△ABE≌△BCF(ASA),
∴BE=BF,
∵AC⊥BD,
∴OE=OF,
所以四邊形BEDF是菱形,故①選項(xiàng)正確;
②正方形ABCD中,OA=OB=OC=OD,
∵AE=CF,
∴OE=OF,又EF⊥BD,BO=OD,
∴四邊形BEDF是菱形,故②選項(xiàng)正確;
③AB=AF,不能推出四邊形BEDF其它邊的關(guān)系,故不能判定是菱形,本選項(xiàng)錯(cuò)誤;
④BE=BF,同①的后半部分證明,故④選項(xiàng)正確.
所以①②④共3個(gè)可以判定四邊形BEDF是菱形.
故選C.
點(diǎn)評(píng):本題綜合考查了正方形的四條邊都相等,對(duì)角線互相垂直平分,每一條對(duì)角線平分一組對(duì)角,三角形全等的判定和全等三角形對(duì)應(yīng)邊相等,等腰三角形三線合一的性質(zhì),熟練掌握性質(zhì)是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點(diǎn),且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點(diǎn)在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,正方形ABCD的邊長為4,將一個(gè)足夠大的直角三角板的直角頂點(diǎn)放于點(diǎn)A處,該三角板的兩條直角邊與CD交于點(diǎn)F,與CB延長線交于點(diǎn)E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長.
(2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案