(2003•海淀區(qū))如圖,在方格紙中有四個(gè)圖形<1>、<2>、<3>、<4>,其中面積相等的圖形是( )
A.<2>和<3>
B.<1>和<2>
C.<2>和<4>
D.<1>和<4>
【答案】分析:把圖形中每一個(gè)方格的面積看作1,因?yàn)樗膫(gè)圖形都是對(duì)稱(chēng)的平面圖形即只需求出圖形的面積即可.
解答:解:把圖形中每一個(gè)方格的面積看作1,則圖形(1)的面積是1.5×4=6,
圖形(2)的面積是1.5×4=6,
圖形(3)的面積是2×4=8,
圖形(4)中一個(gè)圖案的面積比1.5大且比2小,
所以(1)和(2)的面積相等.
故選B.
點(diǎn)評(píng):此題考查了平面圖形的有關(guān)知識(shí),培養(yǎng)學(xué)生的觀察能力和圖形的組合能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2003年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2003•海淀區(qū))已知:如圖,點(diǎn)A在y軸上,⊙A與x軸交于B、C兩點(diǎn),與y軸交于點(diǎn)D(0,3)和點(diǎn)E(0,-1)
(1)求經(jīng)過(guò)B、E、C三點(diǎn)的二次函數(shù)的解析式;
(2)若經(jīng)過(guò)第一、二、三象限的一動(dòng)直線切⊙A于點(diǎn)P(s,t),與x軸交于點(diǎn)M,連接PA并延長(zhǎng)與⊙A交于點(diǎn)Q,設(shè)Q點(diǎn)的縱坐標(biāo)為y,求y關(guān)于t的函數(shù)關(guān)系式,并觀察圖形寫(xiě)出自變量t的取值范圍;
(3)在(2)的條件下,當(dāng)y=0時(shí),求切線PM的解析式,并借助函數(shù)圖象,求出(1)中拋物線在切線PM下方的點(diǎn)的橫坐標(biāo)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(01)(解析版) 題型:選擇題

(2003•海淀區(qū))已知反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)(1,2),則函數(shù)y=-kx可為( )
A.y=-2
B.y=-
C.y=
D.y=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年北京市海淀區(qū)中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2003•海淀區(qū))某同學(xué)在測(cè)量體溫時(shí)意識(shí)到體溫計(jì)的讀數(shù)與水銀柱的長(zhǎng)度之間可能存在著某種函數(shù)關(guān)系,就此他與同學(xué)們選擇了一種類(lèi)型的體溫計(jì),經(jīng)歷了收集數(shù)據(jù)、分析數(shù)據(jù)、得出結(jié)論的探索過(guò)程,他們收集到的數(shù)據(jù)如下:
體溫計(jì)的讀數(shù)t(℃)3536373839404142
水銀柱的長(zhǎng)度l(mm)56.562.568.574.580.586.592.598.5
請(qǐng)你根據(jù)上述數(shù)據(jù)分析判斷,水銀柱的長(zhǎng)度l(mm)與體溫計(jì)的讀數(shù)t(℃)(35≤t≤42)之間存在的函數(shù)關(guān)系是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年北京市海淀區(qū)中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2003•海淀區(qū))已知反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)(1,2),則函數(shù)y=-kx可為( )
A.y=-2
B.y=-
C.y=
D.y=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年北京市海淀區(qū)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2003•海淀區(qū)模擬)已知拋物線y=x2-(a+b)x+,其中a、b、c分別為△ABC中∠A,∠B,∠C的對(duì)邊.
(1)求證:該拋物線與x軸必有兩個(gè)不同的交點(diǎn);
(2)設(shè)拋物線與x軸的兩個(gè)交點(diǎn)為P、Q,頂點(diǎn)為R,且∠PQR=α,tanα=,若△ABC的周長(zhǎng)為10,求拋物線的解析式;
(3)設(shè)直線y=ax-bc與拋物線y=x2-(a+b)x+交于點(diǎn)E、F,與y軸交于點(diǎn)M,且拋物線對(duì)稱(chēng)軸為x=a,O是坐標(biāo)原點(diǎn),△MOE與△MOF的面積之比為5:1,試判斷△ABC的形狀并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案