【題目】用正方形使紙板做三棱柱盒子,每個(gè)盒子由3個(gè)長(zhǎng)方形側(cè)面和2個(gè)正三角形底面組成.硬紙板以如圖兩種方法裁剪(裁剪后邊角料不再利用)). A方法:剪6個(gè)側(cè)面;
B方法:剪4個(gè)側(cè)面和5個(gè)底面.
現(xiàn)有19張硬紙板,裁剪時(shí)x張用A方法,其余用B方法.

(1)分別求裁剪出的側(cè)面和底面的個(gè)數(shù)(用x的代數(shù)式表示)
(2)若裁剪出的側(cè)面和底面恰好全部用完,問(wèn)能做多少個(gè)盒子?

【答案】
(1)解:∵裁剪時(shí)x張用A方法,

∴裁剪時(shí)(19﹣x)張用B方法.

∴側(cè)面的個(gè)數(shù)為:6x+4(19﹣x)=(2x+76)個(gè),

底面的個(gè)數(shù)為:5(19﹣x)=(95﹣5x)個(gè)


(2)解:由題意,得(2x+76):(95﹣5x)=3:2,

解得:x=7,

∴盒子的個(gè)數(shù)為: =30.

答:裁剪出的側(cè)面和底面恰好全部用完,能做30個(gè)盒子


【解析】(1)由x張用A方法,就有(19﹣x)張用B方法,就可以分別表示出側(cè)面?zhèn)數(shù)和底面?zhèn)數(shù);(2)由側(cè)面?zhèn)數(shù)和底面?zhèn)數(shù)比為3:2建立方程求出x的值,求出側(cè)面的總數(shù)就可以求出結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】a2倍與4的差比a3倍小,可表示為( 。

A. 2a+4<3a B. 2a-4<3a C. 2a-4≥3a D. 2a+4≤3a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCD中,∠A﹦100°,則∠B=_________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知A(0,a),B(b,0),且a、b滿足a2﹣4a+20=8b﹣b2

(1)求A、B兩點(diǎn)的坐標(biāo);
(2)如圖2,連接AB,若D(0,﹣6),DE⊥AB于點(diǎn)E,B、C關(guān)于y軸對(duì)稱,M是線段DE上的一點(diǎn),且DM=AB,連接AM,試判斷線段AC與AM之間的位置和數(shù)量關(guān)系,并證明你的結(jié)論;

(3)如圖3,在(2)的條件下,若N是線段DM上的一個(gè)動(dòng)點(diǎn),P是MA延長(zhǎng)線上的一點(diǎn),且DN=AP,連接PN交y軸于點(diǎn)Q,過(guò)點(diǎn)N作NH⊥y軸于點(diǎn)H,當(dāng)N點(diǎn)在線段DM上運(yùn)動(dòng)時(shí),△MQH的面積是否為定值?若是,請(qǐng)求出這個(gè)值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知整數(shù)a1 , a2 , a3 , a4…滿足下列條件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|…依此類推,則a2017的值為(
A.﹣1009
B.﹣1008
C.﹣2017
D.﹣2016

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,∠A,B,C的對(duì)應(yīng)邊分別是a,b,c,若∠B=90°,則下列等式中成立的是( )

A. a2+b2=c2 B. b2+c2=a2 C. a2+c2=b2 D. c2-a2=b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:(1)(-x)5÷(-x)2________;(2)x10÷x2÷x3÷x4________;(3)(p-q)4÷(q-p)3________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,OA⊥OB,∠BOC=50°,且∠AOD:∠COD=4:7.畫(huà)出∠BOC的角平分線OE,并求出∠DOE的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案