邊長為1的正方形的對(duì)角線的長是


  1. A.
    整數(shù)
  2. B.
    分?jǐn)?shù)
  3. C.
    有理數(shù)
  4. D.
    無理數(shù)
D
分析:構(gòu)造直角三角形,利用解直角三角形進(jìn)行求解,熟悉數(shù)的分類也是解題的一個(gè)關(guān)鍵.
解答:邊長為1的正方形的對(duì)角線的長=,
故選D.
點(diǎn)評(píng):此題主要是利用勾股定理求斜邊長,即正方形的對(duì)角線.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

王師傅有兩塊板材邊角料,其中一塊是邊長為60cm的正方形板子;另一塊是上底為30cm,下底為120cm,高為60cm的直角梯形板子(如圖①).王師傅想將這兩塊板子裁成兩塊全等的矩形板材.他將兩塊板子疊放在一起,使梯形的兩個(gè)直角頂點(diǎn)分別與正方形的兩個(gè)頂點(diǎn)重合,兩塊板子的重疊部分為五邊形ABCFE圍成的區(qū)域(如圖②).由于受材料紋理的限制,要求裁出的矩形要以點(diǎn)B為一個(gè)頂點(diǎn).
(1)求FC的長;
(2)利用圖②求出矩形頂點(diǎn)B所對(duì)的頂點(diǎn)到BC邊的距離x(cm)為多少時(shí),矩形的面積y(cm2)最大?最大面積是多少?
(3)若想使裁出的矩形為正方形,試求出面積最大的正方形的邊長.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第6章《二次函數(shù)》?碱}集(19):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

王師傅有兩塊板材邊角料,其中一塊是邊長為60cm的正方形板子;另一塊是上底為30cm,下底為120cm,高為60cm的直角梯形板子(如圖①).王師傅想將這兩塊板子裁成兩塊全等的矩形板材.他將兩塊板子疊放在一起,使梯形的兩個(gè)直角頂點(diǎn)分別與正方形的兩個(gè)頂點(diǎn)重合,兩塊板子的重疊部分為五邊形ABCFE圍成的區(qū)域(如圖②).由于受材料紋理的限制,要求裁出的矩形要以點(diǎn)B為一個(gè)頂點(diǎn).
(1)求FC的長;
(2)利用圖②求出矩形頂點(diǎn)B所對(duì)的頂點(diǎn)到BC邊的距離x(cm)為多少時(shí),矩形的面積y(cm2)最大?最大面積是多少?
(3)若想使裁出的矩形為正方形,試求出面積最大的正方形的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年河北省廊坊市廣陽區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

王師傅有兩塊板材邊角料,其中一塊是邊長為60cm的正方形板子;另一塊是上底為30cm,下底為120cm,高為60cm的直角梯形板子(如圖①).王師傅想將這兩塊板子裁成兩塊全等的矩形板材.他將兩塊板子疊放在一起,使梯形的兩個(gè)直角頂點(diǎn)分別與正方形的兩個(gè)頂點(diǎn)重合,兩塊板子的重疊部分為五邊形ABCFE圍成的區(qū)域(如圖②).由于受材料紋理的限制,要求裁出的矩形要以點(diǎn)B為一個(gè)頂點(diǎn).
(1)求FC的長;
(2)利用圖②求出矩形頂點(diǎn)B所對(duì)的頂點(diǎn)到BC邊的距離x(cm)為多少時(shí),矩形的面積y(cm2)最大?最大面積是多少?
(3)若想使裁出的矩形為正方形,試求出面積最大的正方形的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學(xué)模擬試卷2(瓜瀝一中 易月)(解析版) 題型:解答題

(2006•陜西)王師傅有兩塊板材邊角料,其中一塊是邊長為60cm的正方形板子;另一塊是上底為30cm,下底為120cm,高為60cm的直角梯形板子(如圖①).王師傅想將這兩塊板子裁成兩塊全等的矩形板材.他將兩塊板子疊放在一起,使梯形的兩個(gè)直角頂點(diǎn)分別與正方形的兩個(gè)頂點(diǎn)重合,兩塊板子的重疊部分為五邊形ABCFE圍成的區(qū)域(如圖②).由于受材料紋理的限制,要求裁出的矩形要以點(diǎn)B為一個(gè)頂點(diǎn).
(1)求FC的長;
(2)利用圖②求出矩形頂點(diǎn)B所對(duì)的頂點(diǎn)到BC邊的距離x(cm)為多少時(shí),矩形的面積y(cm2)最大?最大面積是多少?
(3)若想使裁出的矩形為正方形,試求出面積最大的正方形的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年陜西省中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•陜西)王師傅有兩塊板材邊角料,其中一塊是邊長為60cm的正方形板子;另一塊是上底為30cm,下底為120cm,高為60cm的直角梯形板子(如圖①).王師傅想將這兩塊板子裁成兩塊全等的矩形板材.他將兩塊板子疊放在一起,使梯形的兩個(gè)直角頂點(diǎn)分別與正方形的兩個(gè)頂點(diǎn)重合,兩塊板子的重疊部分為五邊形ABCFE圍成的區(qū)域(如圖②).由于受材料紋理的限制,要求裁出的矩形要以點(diǎn)B為一個(gè)頂點(diǎn).
(1)求FC的長;
(2)利用圖②求出矩形頂點(diǎn)B所對(duì)的頂點(diǎn)到BC邊的距離x(cm)為多少時(shí),矩形的面積y(cm2)最大?最大面積是多少?
(3)若想使裁出的矩形為正方形,試求出面積最大的正方形的邊長.

查看答案和解析>>

同步練習(xí)冊(cè)答案