【題目】如圖①,在正方形中,是對角線上的一點,點在的延長線上,且
求證:
求證:
把正方形改為菱形,其他條件不變(如圖②),且,求的大小.
【答案】(1)詳見解析;(2)詳見解析;(3)
【解析】
(1)根據(jù)正方形的四條邊都相等可得BC=DC,對角線平分一組對角可得∠BCP=∠DCP,然后利用“邊角邊”證明即可;
(2)根據(jù)全等三角形對應角相等可得∠CBP=∠CDP,根據(jù)等邊對等角可得∠CBP=∠E,然后求出∠DPE=∠DCE,再根據(jù)兩直線平行,同位角相等可得∠DCE=∠ABC,從而得證;
(3)仿照(1),(2)的證明過程,即可得到∠DPE=∠ABC=58°.
證明:正方形
在和中
正方形
.
(3)在菱形ABCD中,BC=DC,∠BCP=∠DCP,
在△BCP和△DCP中,,
∴△BCP≌△DCP(SAS),
∴∠CBP=∠CDP,
∵PE=PB,
∴∠CBP=∠E,
∴∠DPE=∠DCE,
∵AB∥CD,
∴∠DCE=∠ABC,
∴∠DPE=∠ABC=58°.
科目:初中數(shù)學 來源: 題型:
【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小聰以靈感,他驚喜的發(fā)現(xiàn),當兩個全等的直角三角形如圖1或圖2擺放時,都可以用“面積法”來證明,下面是小聰利用圖1證明勾股定理的過程:
將兩個全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2
證明:連接DB,過點D作BC邊上的高DF,則DF=EC=b﹣a.
∵S四邊形ADCB=S△ACD+S△ABC=b2+ab.
又∵S四邊形ADCB=S△ADB+S△DCB=c2+a(b﹣a)
∴b2+ab=c2+a(b﹣a)
∴a2+b2=c2
請參照上述證法,利用圖2完成下面的證明.
將兩個全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2
證明:連結(jié)______,過點B作________,則____________.
∵S五邊形ACBED=S△ACB+S△ABE+S△ADE=____________.
又∵S五邊形ACBED=______________=ab+c2+a(b﹣a),
∴___________________=ab+c2+a(b﹣a),
∴a2+b2=c2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有、、三個居民小區(qū)的位置成三角形,現(xiàn)決定在三個小區(qū)之間修建一個購物超市,使超市到三個小區(qū)的距離相等,則超市應建在( )
A.在∠A、∠B兩內(nèi)角平分線的交點處
B.在AC、BC兩邊垂直平分線的交點處
C.在AC、BC兩邊高線的交點處
D.在AC、BC兩邊中線的交點處
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E是BC上一點,BEBC,連接AE,作BF⊥AE,分別與AE、CD交于點K、F,G、H分別在AD、AE上,且四邊形KFGH是矩形,則________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算下列各題:
(1)(-12.5)+20.5;
(2)2×(-);
(3)10+2÷×(-2);
(4)1-(1-0.5)××[2-(-2)2];
(5)-52+(-2)÷2;
(6)-22÷;
(7)17-23÷(-2)×3;
(8)2×(-5)+23-3÷;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,點O是邊AC上一個動點,過O作直線MN∥BC.設MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F.
(1)求證:OE=OF;
(2)若CE=12,CF=5,求OC的長;
(3)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中國的茶文化源遠流長,根據(jù)制作方法和茶多酚氧化(發(fā)酵)程度的不同,可分為六大類:綠茶(不發(fā)酵)、白茶(輕微發(fā)酵)、黃茶(輕發(fā)酵)、青茶(半發(fā)酵)、黑茶(后發(fā)酵)、紅茶(全發(fā)酵).春節(jié)將至,為款待親朋好友,小葉去茶莊選購茶葉.茶莊有碧螺春、龍井兩種綠茶,一種青茶——武夷巖茶及一種黃茶——銀針出售.
(1)隨機購買一種茶葉,是綠茶的概率為________;
(2)隨機購買兩種茶葉,求一種是綠茶、一種是銀針的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】臺風是一種自然災害,它以臺風中心為圓心在周圍數(shù)十千米范圍內(nèi)形成氣旋風暴,有極強的破壞力,如圖,據(jù)氣象觀測、距某城市的正南方向千米處有一臺風中心,其中心最大風力為級,每遠離臺風中心千米風力就會減弱一級,該臺風中心現(xiàn)正以千米/時的速度沿北偏東方向往移動,且臺風中心風力不變,若城市所受風力達到或超過四級,則稱為受臺風影響
該城市是否會受到這交臺風的影響?請說明理由;
若會受到臺風影響,那么臺風影響該城市持續(xù)時間有多少?
該城市受到臺風影響的最大風力為幾級?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=﹣x+10與x軸、y軸分別交于點B,C,點A的坐標為(8,0),P(x,y)是直線y=﹣x+10在第一象限內(nèi)一個動點.
(1)求△OPA的面積S與x的函數(shù)關(guān)系式,并寫出自變量的x的取值范圍;
(2)當△OPA的面積為10時,求點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com