【題目】如圖,以△ABC的邊AB為直徑的⊙O與邊AC相交于點(diǎn)D,BC是⊙O的切線,E為BC的中點(diǎn),連接BD、DE.
(1)求DE是⊙O的切線;
(2)設(shè)△CDE的面積為S1,四邊形ABED的面積為S2,若S2=5S1,求tan∠BAC的值;
(3)在(2)的條件下,連接AE,若⊙O的半徑為2,求AE的長(zhǎng).
【答案】(1)證明見解析;(2);(3).
【解析】
(1)連接OD,由圓周角定理就可得∠ADB=90°和∠CDB=90°,又由E為BC的中點(diǎn)可以得出DE=BE,進(jìn)一步得到∠EDO=∠EBO,由等式的性質(zhì)就可以得出∠ODE=90°即可證明;
(2)由S2=5S1,即△ADB的面積是△CDE面積的4倍,可得AD:CD=2:1,AD:BD=2,則可求tan∠BAC;
(3)由(2)的關(guān)系即可知AD:BD=2,在Rt△AEB中,運(yùn)用勾股定理解答即可.
(1)證明:連接OD,
∴OD=OB
∴∠ODB=∠OBD.
∵AB是直徑,
∴∠ADB=90°,
∴∠CDB=90°.
∵E為BC的中點(diǎn),
∴DE=BE,
∴∠EDB=∠EBD,
∴∠ODB+∠EDB=∠OBD+∠EBD,
即∠EDO=∠EBO.
∵BC是以AB為直徑的⊙O的切線,
∴AB⊥BC,
∴∠EBO=90°,
∴∠ODE=90°,
∴DE是⊙O的切線;
(2)解:∵S2=5S1,
∴S△ADB=2S△CDB,
∴=,
∵△BDC∽△ADB,
∴=,
∴DB2=ADDC,
∴ ,
∴tan∠BAC=;
(3)解:∵tan∠BAC=,
∴,得BC=AB=2 ,
∵E為BC的中點(diǎn),
∴BE=BC=,
∴AE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一項(xiàng)工程,乙隊(duì)單獨(dú)完成所需的時(shí)間是甲隊(duì)單獨(dú)完成所需時(shí)間的2倍,若兩隊(duì)合作4天后,剩下的工作甲單獨(dú)做還需要6天完成.
(1)求甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工程各需多少天;
(2)若甲隊(duì)每天的報(bào)酬是1萬(wàn)元,乙隊(duì)每天的報(bào)酬是0.3萬(wàn)元,要使完成這項(xiàng)工程時(shí)的總報(bào)酬不超過9.6萬(wàn)元,甲隊(duì)最多可以工作多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高中學(xué)校為使高一新生入校后及時(shí)穿上合身的校服,現(xiàn)提前對(duì)某校九年級(jí)(1)班學(xué)生即將所穿校服型號(hào)情況進(jìn)行摸底調(diào)查,并根據(jù)調(diào)查結(jié)果繪制如圖兩個(gè)不完整的統(tǒng)計(jì)圖(校服型號(hào)以身高作為標(biāo)準(zhǔn),共分為6種型號(hào)).
根據(jù)以上信息,解答下列問題:
(1)該班共有多少名學(xué)生?
(2)在條形統(tǒng)計(jì)圖中,請(qǐng)把空缺部分補(bǔ)充完整;在扇形統(tǒng)計(jì)圖中,請(qǐng)計(jì)算185型校服所對(duì)應(yīng)的扇形圓心角的大。
(3)求該班學(xué)生所穿校服型號(hào)的眾數(shù)和中位數(shù).如果該高中學(xué)校準(zhǔn)備招收2000名高一新生,則估計(jì)需要準(zhǔn)備多少套180型號(hào)的校服?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一副直角三角板如圖放置,其中BC=6,EF=8,把30°的三角板向右平移,使頂點(diǎn)B落在45°的三角板的斜邊DF上,則兩個(gè)三角板重疊部分(陰影部分)的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB=AC,CO的延長(zhǎng)線交AB于點(diǎn)D,若BC=6,sin∠BAC=,則AC=_____,CD=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以G(0,1)為圓心,半徑為2的圓與x軸交于A、B兩點(diǎn),與y軸交于C、D兩點(diǎn),點(diǎn)E為⊙G上一動(dòng)點(diǎn),CF⊥AE于F.當(dāng)點(diǎn)E從點(diǎn)B出發(fā)順時(shí)針運(yùn)動(dòng)到點(diǎn)D時(shí),點(diǎn)F所經(jīng)過的路徑長(zhǎng)為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2﹣9ax+18a的圖象與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),圖象的頂點(diǎn)為C,直線AC交y軸于點(diǎn)D.
(1)連接BD,若∠BDO=∠CAB,求這個(gè)二次函數(shù)的表達(dá)式;
(2)是否存在以原點(diǎn)O為對(duì)稱軸的矩形CDEF?若存在,求出這個(gè)二次函數(shù)的表達(dá)式,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形,點(diǎn)在邊上,且,,垂足為,且交于點(diǎn),與交于點(diǎn),延長(zhǎng)至,使,連接.有如下結(jié)論:①;②;③;④.上述結(jié)論中,所有正確結(jié)論的序號(hào)是( )
A. ①②B. ①③C. ①②③D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是由7個(gè)同樣大小的正方體擺成的幾何體.將正方體①移走后,所得幾何體( 。
A. 主視圖不變,左視圖不變
B. 左視圖改變,俯視圖改變
C. 主視圖改變,俯視圖改變
D. 俯視圖不變,左視圖改變
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com