【題目】在平行四邊形ABCD中,點E是AD邊上一點,連接CE,交對角線BD于點F,過點A作AB的垂線交BD的延長線于點G,過B作BH垂直于CE,垂足為點H,交CD于點P,2∠1+∠2=90°.
(1)若PH=2,BH=4,求PC的長;
(2)若BC=FC,求證:GF=PC.
【答案】(1)2;(2)見解析.
【解析】
(1)根據四邊形ABCD是平行四邊形,先證∠BCP=∠BPC,再根據勾股定理即可求出答案;
(2)由(1)得:BC=BP=AD,可知四邊形ABPD是等腰梯形,從而證∠1=∠GAD,然后證△DAG≌△FCD,作FM⊥CD于M,BN⊥CD于N,△CFM≌△BPN即可求出答案.
(1)解:∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC,AB∥CD,AB=CD,
∴∠BCH=∠2,
∴∠BCP=∠2+∠1,
∵2∠1+∠2=90°.
∴∠BCP=90°﹣∠1,
∵BH⊥CE,
∴∠BPC+∠1=90°,
∴∠BPC=90°﹣∠1,
∴∠BCP=∠BPC,
∴BC=BP=BH+PH=4+2=6,
∴CH2=BC2﹣BH2=62﹣42=20,
∴PC===2;
(2)證明:由(1)得:BC=BP=AD,
∴四邊形ABPD是等腰梯形,
∴∠DAB=∠PBA,
∵CD∥AB,
∴∠PBA=∠BPC,
∵BH⊥CE,
∴∠1=90°﹣∠BPC=90°﹣∠PBA=90°﹣∠DAB=∠GAD,
∵AD=BC,BC=FC,
∴AD=FC,∠CBF=∠CFB,
∵AD∥BC,
∴∠EDF=∠CBF,
∴∠EDF=∠CFB=∠EFD,
∴∠ADG=∠CFD,
在△DAG和△FCD中,,
∴△DAG≌△FCD(ASA),
∴AG=CD=AB,DG=FD,
∵AG⊥AB,
∴△ABG是等腰直角三角形,
∴∠DBA=∠G=45°,
作FM⊥CD于M,BN⊥CD于N,如圖所示:
∵AB∥CD,
∴∠CDF=∠DBA=45°,
∴△DMF是等腰直角三角形,
∴DM=FM,DF=FM,
∵BN⊥CD,BH⊥CE,
∴由三角形內角和定理得:∠1=∠PBN,
在△CFM和△BPN中,,
∴△CFM≌△BPN(AAS),
∴FM=PN,
∵BC=BP,BN⊥CD,
∴PN=CN,
∴PC=2PN=2FM=DF,
∴PC=2DF,
∴GF=2DF=PC
科目:初中數學 來源: 題型:
【題目】已知拋物線.請按照要求寫出符合條件的拋物線的解析式.
(1)若拋物線與關于軸對稱,則= ;
(2)若拋物線與關于軸對稱,則= ;
(3)若拋物線與關于坐標原點對稱,則= ;
(4)若拋物線是由繞著點P(1,0)旋轉180°后所得,則= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC 中,∠ C=90°,AC=5,BC=12,D 是 BC 邊的中點.
(1)尺規(guī)作圖:過點 D 作 DE⊥AB 于點 E;(保留作圖痕跡,不寫做法)
(2)求 DE 的長
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】、為的切線,切點分別為點、,延長交于點,交的延長線于點,連接、,與交于點.
(1)如圖1,求證:;
(2)如圖2,點是弧的中點,連接交AD于點,求證:;
(3)如圖3,在(2)的條件下:連接并延長交于點,連接交于點,若,,求線段的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲投資銷售一種利潤率為0.4的電子產品,第一次購入的電子產品銷售完后,甲取出28萬元,并把剩下的本金和利潤全部用于購入該電子產品;第二次購入的電子產品銷售完后,再次取出19.6萬元,并把剩下的本金和利潤全部用于購入該電子產品;第三次購入電子產品銷售完后,再次取出6.72萬元.并把剩下的本金和利潤全部用于購入該電子產品;第四次購入的電子產品銷售完后,本次銷售額為9.8萬元,這樣,甲投資該項目的本金和利潤全部收回,則甲投資該項目的本金是_____萬元.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列拋物線中,其頂點在反比例函數y=的圖象上的是( 。
A.y=(x﹣4)2+3B.y=(x﹣4)2﹣3C.y=(x+2)2+1D.y=(x+2)2﹣1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C = 90°,點O是斜邊AB上一定點,到點O的距離等于OB的所有點組成圖形W,圖形W與AB,BC分別交于點D,E,連接AE,DE,∠AED=∠B.
(1)判斷圖形W與AE所在直線的公共點個數,并證明.
(2)若,,求OB.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com