【題目】如圖,已知AF=AB,∠FAB=60°,AE=AC,∠EAC=60°,CF和BE交于O點,則下列結(jié)論:①CF=BE;②∠COB=120°;③OA平分∠FOE;④OF=OA+OB.其中正確的有_____.
【答案】①②③④.
【解析】
結(jié)合等邊三角形△ABF和△ACE的性質(zhì),利用SAS可證△ABE≌△AFC,由全等三角形的性質(zhì)可知①正確;由三角形內(nèi)角和為180度易求∠BOC的度數(shù),可知②正確;連接AO,過A分別作AP⊥CF與P,AM⊥BE于Q,由S△ABE=S△AFC可知AP=AQ,利用HL定理可證,易知OA平分∠FOE,所以③正確;在OF上截取OD=OB,利用SAS可證△FBD≌△ABO,由全等三角形對應(yīng)邊相等易得OF= OA+OB,故④正確.
解:∵△ABF和△ACE是等邊三角形,
∴AB=AF,AC=AE,∠FAB=∠EAC=60°,
∴∠FAB+∠BAC=∠EAC+∠BAC,即∠FAC=∠BAE,
在△ABE與△AFC中,
,
∴△ABE≌△AFC(SAS),
∴BE=FC,∠AEB=∠ACF,故①正確;
∵∠EAN+∠ANE+∠AEB=180°,∠CON+∠CNO+∠ACF=180°,∠ANE=∠CNO,∴∠CON=∠CAE=60°=∠MOB,
∴∠BOC=180°﹣∠CON=120°,故②正確;
連接AO,過A分別作AP⊥CF與P,AM⊥BE于Q,如圖1,
∵△ABE≌△AFC,∴S△ABE=S△AFC,∴CFAP=BEAQ,∵CF=BE,∴AP=AQ,
,∴OA平分∠FOE,所以③正確;
如圖2,在OF上截取OD=OB,
∵∠BOF=60°,∴△OBD是等邊三角形,∴BD=BO,∠DBO=60°,∴∠FBD=∠ABO.
∵BF=AB,∴△FBD≌△ABO(SAS),∴DF=OA,∴OF=DF+OD=OA+OB,故④正確.
故答案為:①②③④.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ADE是兩個不全等的等腰直角三角形,其中點B與點D是直角頂點,現(xiàn)固定△ABC,而將△ADE繞點A在平面內(nèi)旋轉(zhuǎn).
(1)如圖1,當(dāng)點D在CA延長線上時,點M為EC的中點,求證:△DMB是等腰三角形.
(2)如圖2,當(dāng)點E在CA延長線上時,M是EC上一點,若△DMB是等腰直角三角形,∠DMB為直角,求證:點M是EC的中點.
(3)如圖3,當(dāng)△ADE繞點A旋轉(zhuǎn)任意角度時,線段EC上是否都存在點M,使△BMD為等腰直角三角形,若不存在,請舉出反例;若存在,請予以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義一種對正整數(shù)n的“F運算”:①當(dāng)n為奇數(shù)時,結(jié)果為3n+5;②當(dāng)n為偶數(shù)時,結(jié)果為(其中k是使為奇數(shù)的最小正整數(shù)),并且運算重復(fù)進行.例如:取n=26,則運算過程如圖:
那么當(dāng)n=9時,第2019次“F運算”的結(jié)果是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】機械表是日常生活中常見的一類鐘表,與電子表不同,機械表受環(huán)境、機芯等因素的影響常會產(chǎn)生走時誤差.現(xiàn)為了比較市場上甲、乙兩款機械表的精準(zhǔn)度,從兩款表中,各隨機抽取一塊進行每日走時誤差的檢測,連續(xù)檢測10天,兩款表每日走時誤差的統(tǒng)計數(shù)據(jù)如圖(單位:秒):
(1)甲、乙兩種機械表的平均走時誤差分別是多少?
(2)小明現(xiàn)計劃購買一塊機械表,如果僅從走時的準(zhǔn)確度考慮,你會推薦他購買甲、乙哪一種,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=xm.
(1)若花園的面積為192m2, 求x的值;
(2)若在P處有一棵樹與墻CD,AD的距離分別是15m和6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),求花園面積S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,△ABC中,∠ACB=90°,CD⊥AB于D,E為BC中點,CF⊥AE于F.
(1)求證:4CE2=BDAB;
(2)若2∠DCF=∠ECF,求cos∠ECF的值;
(3)如圖2,DF延長線交BC于G,若AC=BC,EG=1,則DG= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線和反比例函數(shù)的圖象都經(jīng)過點,點在反比例函數(shù)的圖象上,連接.
(1)求直線和反比例函數(shù)的解析式;
(2)直線經(jīng)過點嗎?請說明理由;
(3)當(dāng)直線與反比例數(shù)圖象的交點在兩點之間.且將分成的兩個三角形面積之比為時,請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,已知拋物線與軸交于,兩點,與軸交于點.
(1)求拋物線的函數(shù)表達式;
(2)若點P是位于直線BC上方拋物線上的一個動點,求△BPC面積的最大值;
(3)若點D是y軸上的一點,且以B,C,D為頂點的三角形與相似,求點D的坐標(biāo);
(4)若點E為拋物線的頂點,點F(3,a)是該拋物線上的一點,在軸、軸上分別找點M、N,使四邊形EFMN的周長最小,求出點M、N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角△ABC中,延長BC到點D,點O是AC邊上的一個動點,過點O作直線MN∥BC,MN分別交∠ACB、∠ACD的平分線于E,F兩點,連接AE、AF,在下列結(jié)論中:①OE=OF;②CE=CF;③若CE=12,CF=5,則OC的長為6;④當(dāng)AO=CO時,四邊形AECF是矩形,其中正確的有( 。
A.4個B.3個C.2個D.1個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com