【題目】蘇北五市聯(lián)合通過(guò)網(wǎng)絡(luò)投票選出了一批“最有孝心的美少年”.根據(jù)各市的入選結(jié)果制作出如下統(tǒng)計(jì)表,后來(lái)發(fā)現(xiàn),統(tǒng)計(jì)表中前三行的所有數(shù)據(jù)都是正確的,后兩行中有一個(gè)數(shù)據(jù)是錯(cuò)誤的.請(qǐng)回答下列問(wèn)題:

1)統(tǒng)計(jì)表________,________;

2)統(tǒng)計(jì)表后三行中哪一個(gè)數(shù)據(jù)是錯(cuò)誤的?該數(shù)據(jù)的正確值是多少?

3)組委會(huì)決定從來(lái)自宿遷市的4位“最有孝心的美少年”中,任選兩位作為蘇北五市形象代言人,是宿遷市“最有孝心的美少年”中的兩位,問(wèn)同時(shí)入選的概率是多少?并請(qǐng)畫(huà)出樹(shù)狀圖或列出表格.

區(qū)域

頻數(shù)

頻率

宿遷

4

a

連云港

7

0.175

淮安

0.2

徐州

10

0.25

鹽城

12

0.275

【答案】10.1,8;(2)鹽城市對(duì)應(yīng)頻數(shù)12這個(gè)數(shù)據(jù)是錯(cuò)誤的,該數(shù)據(jù)的正確值是11;(3

【解析】

1)利用連云港的頻數(shù)及頻率求出總數(shù),再根據(jù)a的頻數(shù)、b的頻率利用公式即可求出答案;

2)計(jì)算各組的頻率和是否得1,根據(jù)頻率計(jì)算各組頻數(shù)是否正確,由此即可判斷出錯(cuò)誤的數(shù)據(jù);

3)設(shè)來(lái)自宿遷的4最有孝心的美少年、、、,列表表示所有可能的情況,再根據(jù)概率公式計(jì)算即可.

1)∵連云港市頻數(shù)為7,頻率為0175,∴數(shù)據(jù)總數(shù)為,

,

故答案為0.1,8;

2)∵

∴各組頻率正確,

,

∴鹽城市對(duì)應(yīng)頻數(shù)12這個(gè)數(shù)據(jù)是錯(cuò)誤的,該數(shù)據(jù)的正確值是11

3)設(shè)來(lái)自宿遷的4位“最有孝心的美少年”為、、,列表如下:

∵共有12種等可能的結(jié)果,、同時(shí)入選的有2種情況,

、同時(shí)入選的概率是:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,對(duì)角線ACBD相交于點(diǎn)O,E、F分別在OD、OC上,且DE=CF,連接DF、AE,AE的延長(zhǎng)線交DF于點(diǎn)M

1)求證:AE=DF;

2)求證:AMDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市隨機(jī)選取1000位顧客,記錄了他們購(gòu)買甲、乙、丙、丁四種商品的情況,整理成如下統(tǒng)計(jì)表,其中“”表示購(gòu)買,“×”表示未購(gòu)買.假定每位顧客購(gòu)買商品的可能性相同.

商品

顧客人數(shù)

100

×

217

×

×

200

×

300

×

×

85

×

×

×

98

×

×

×

1)估計(jì)顧客同時(shí)購(gòu)買乙和丙的概率為__________

2)如果顧客購(gòu)買了甲,并且同時(shí)也在乙、丙、丁中進(jìn)行了選購(gòu),則購(gòu)買__________(填乙、丙、。┥唐返目赡苄宰畲螅

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是⊙的直徑,是⊙的一條弦,的延長(zhǎng)線交⊙于點(diǎn),交的延長(zhǎng)線于點(diǎn),連接,且恰好,連接于點(diǎn),延長(zhǎng)于點(diǎn),連接

1)求證:是⊙的切線;

2)求證:點(diǎn)的中點(diǎn);

3)當(dāng)⊙的半徑為時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“圓材埋壁”是我國(guó)古代著名的數(shù)學(xué)著作《九章算術(shù)》中的一個(gè)問(wèn)題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長(zhǎng)六寸,問(wèn)徑幾何?”用現(xiàn)代的數(shù)學(xué)語(yǔ)言表述是:“CD的直徑,弦,垂足為ECE=1寸,AB=10寸,求直徑CD的長(zhǎng)”,依題意得CD的長(zhǎng)為(

A.12B.13C.24D.26

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC是等邊三角形,點(diǎn)D是射線BC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)BC重合),△ADE是以AD為邊的等邊三角形,過(guò)點(diǎn)EBC的平行線,分別交射線ABAC于點(diǎn)F、G,連接BE

1)如圖(a)所示,當(dāng)點(diǎn)D在線段BC上時(shí).

①求證:△AEB≌△ADC

②探究四邊形BCGE是怎樣特殊的四邊形?并說(shuō)明理由;

2)如圖(b)所示,當(dāng)點(diǎn)DBC的延長(zhǎng)線上時(shí),直接寫(xiě)出(1)中的兩個(gè)結(jié)論是否成立;

3)在(2)的情況下,當(dāng)點(diǎn)D運(yùn)動(dòng)到什么位置時(shí),四邊形BCGE是菱形?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線y=﹣x+cx軸交于點(diǎn)A(4,0),與y軸交于點(diǎn)B,拋物線y=﹣x2+bx+c經(jīng)過(guò)A、B兩點(diǎn).

(1)求拋物線表達(dá)式;

(2)點(diǎn)P為拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作垂直于x軸的直線分別交x軸和直線ABM、N兩點(diǎn),若P、M、N三點(diǎn)中恰有一點(diǎn)是其他兩點(diǎn)所連線段的中點(diǎn)(三點(diǎn)重合除外),請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l:y=-x,點(diǎn)A1坐標(biāo)為(-4,0).過(guò)點(diǎn)A1作x軸的垂線交直線l于點(diǎn)B1,以原點(diǎn)O為圓心,OB1長(zhǎng)為半徑畫(huà)弧交x軸負(fù)半軸于點(diǎn)A2,再過(guò)點(diǎn)A2作x軸的垂線交直線l于點(diǎn)B2,以原點(diǎn)O為圓心,OB2長(zhǎng)為半徑畫(huà)弧交x軸負(fù)半軸于點(diǎn)A3,…,按此做法進(jìn)行下去,點(diǎn)A2018的坐標(biāo)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,ECD上一點(diǎn),若△ADE沿直線AE翻折,使點(diǎn)D落在BC邊上點(diǎn)D′處.FAD上一點(diǎn),且DFCD',EFBD相交于點(diǎn)G,AD′與BD相交于點(diǎn)HDEBDHG4,則BD__

查看答案和解析>>

同步練習(xí)冊(cè)答案