在△ABC中,AB=15,AC=13,高AD=12,設(shè)能完全覆蓋△ABC的圓的半徑為R.則R的最小值是   
【答案】分析:分兩種情況:①如果△ABC是銳角三角形,那么能完全覆蓋△ABC的最小圓必然是△ABC的外接圓.因而求外接圓的半徑即可,為此,作過(guò)B點(diǎn)作△ABC的外接圓直徑BE,連接AE.在△BAE與△ADC中,根據(jù)同弧所對(duì)的圓周角相等可知∠ACB=∠AEB,因而可證得△BAE∽△ADC.根據(jù)相似三角形的性質(zhì),求得直徑BE的長(zhǎng),那么半徑R即可知;②如果△ABC是鈍角三角形,那么能完全覆蓋△ABC的最小圓為最長(zhǎng)邊AB的一半.
解答:解:分兩種情況:
①如果△ABC是銳角三角形,那么能完全覆蓋△ABC的最小圓必然是△ABC的外接圓,
連接BO,并延長(zhǎng)交△ABC的外接圓O于點(diǎn)E,并連接AE,
則∠ACB=∠AEB,
∵∠BAE=∠ADC=90°,
∴△BAE∽△ADC,
,
==,
又∵BE是⊙O的直徑,
∴BO=BE=
②如果△ABC是鈍角三角形,那么能完全覆蓋△ABC的最小圓為最長(zhǎng)邊AB的一半,
故R==7.5.
故答案為:7.5或
點(diǎn)評(píng):能夠熟練運(yùn)用正弦定理求得任意三角形外接圓的半徑.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•寧德質(zhì)檢)如圖,在△ABC中,AB=AC=6,點(diǎn)0為AC的中點(diǎn),OE⊥AB于點(diǎn)E,OE=
32
,以點(diǎn)0為圓心,OA為半徑的圓交AB于點(diǎn)F.
(1)求AF的長(zhǎng);
(2)連結(jié)FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•襄陽(yáng))如圖,在△ABC中,AB=AC,AD⊥BC于點(diǎn)D,將△ADC繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使AC與AB重合,點(diǎn)D落在點(diǎn)E處,AE的延長(zhǎng)線交CB的延長(zhǎng)線于點(diǎn)M,EB的延長(zhǎng)線交AD的延長(zhǎng)線于點(diǎn)N.
求證:AM=AN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,AB=AC,把△ABC繞著點(diǎn)A旋轉(zhuǎn)至△AB1C1的位置,AB1交BC于點(diǎn)D,B1C1交AC于點(diǎn)E.求證:AD=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•濱湖區(qū)一模)如圖,在△ABC中,AB是⊙O的直徑,∠B=60°,∠C=70°,則∠BOD的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•吉林)如圖,在△ABC中,AB=AC,D為邊BC上一點(diǎn),以AB,BD為鄰邊作?ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)若BD=CD,求證:四邊形ADCE是矩形.

查看答案和解析>>

同步練習(xí)冊(cè)答案