分析 (1)取AD的中點(diǎn)H,連接HM,則BM=HD,由已知可推出∠DHM=∠MBN,∠BMN=∠HDM,從而利用ASA判定△DHM≌△MBN,從而得到DM=MN;
(2)如圖2,若點(diǎn)M在AB的延長(zhǎng)線上,則在AD延長(zhǎng)線上取點(diǎn)H,使DH=BM,連接HM,根據(jù)余角的性質(zhì)得到∠NME=∠ADM,于是得到∠MDH=∠NMB(等角的鄰補(bǔ)角相等),由角平分線的定義得到∠NBM=45°,推出△AMH為等腰直角三角形,得到∠MHD=45°,證得△DHM≌△MBN(ASA),根據(jù)全等三角形的性質(zhì)即可得到結(jié)論.
解答 證明:(1)如圖1,取AD的中點(diǎn)H,連接HM,
∵四邊形ABCD是正方形,M為AB的中點(diǎn),
∴BM=HD=AM=AH,
∴△AMH為等腰直角三角形,
∴∠DHM=135°,
而BN是∠CBE的平分線.
∴∠MBN=135°,
∴∠DHM=∠MBN,
又∵DM⊥MN,
∴∠NMB+∠AMD=90°,
又∵∠HDM+∠AMD=90°,
∴∠BMN=∠HDM,
在△DHM與△MBN中,
$\left\{\begin{array}{l}{∠HDM=∠BMN}\\{DH=MB}\\{∠DHM=∠MBN}\end{array}\right.$,
∴△DHM≌△MBN(ASA),
∴DM=MN;
(2)如圖2,若點(diǎn)M在AB的延長(zhǎng)線上,
則在AD延長(zhǎng)線上取點(diǎn)H,使DH=BM,連接HM,
∵DM⊥MN,即∠DMN=90°,
∴∠DMA+∠NME=90°,
又∵∠DMA+∠ADM=90°,
∴∠NME=∠ADM,
∴∠MDH=∠NMB(等角的鄰補(bǔ)角相等),
又∵BN為∠CBE的平分線,且∠CBE=90°,
∴∠NBM=45°,
∵AD=AB,DH=BM,
∴AD+DH=AB+BM,即AH=AM,且∠A=90°,
∴△AMH為等腰直角三角形,
∴∠MHD=45°,
∴∠MHD=∠NBM,
在△DHM與△MBN中,
$\left\{\begin{array}{l}{∠MHD=∠NBM}\\{DH=BM}\\{∠MDH=∠NMB}\end{array}\right.$,
∴△DHM≌△MBN(ASA),
∴DM=MN.
點(diǎn)評(píng) 此題主要考查了全等三角形的判定和性質(zhì),角平分線的性質(zhì),正方形的性質(zhì),正確的作出輔助線構(gòu)造全等三角形是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | -1 | D. | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 3$\sqrt{3}$ | C. | 3$\sqrt{5}$ | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\frac{5}{2}$ | C. | $\frac{7}{2}$ | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x=0 | B. | x+y=10 | C. | 2(y-1)=y(y-1) | D. | 2(x3+1)=3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com