【題目】計算:(π﹣3.14)0+(﹣1)2015+|1﹣ |﹣3tan30°.
【答案】解:原式=1﹣1+ ﹣1﹣3× =1﹣1+ ﹣1﹣ =﹣1
【解析】原式第一項利用零指數(shù)冪法則計算,第二項利用乘方的意義化簡,第三項利用絕對值的代數(shù)意義化簡,最后一項利用特殊角的三角函數(shù)值計算即可得到結(jié)果.
【考點精析】本題主要考查了零指數(shù)冪法則和特殊角的三角函數(shù)值的相關知識點,需要掌握零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,ABCD為正方形,直線MN分別過AD邊與BC邊的中點,點P為直線MN上任意一點,連接PB、PC分別與AD邊交于E、F兩點,PC與BD交于點K,連接AK與PB交于點G.
(1)探索發(fā)現(xiàn)
當點P落在AD邊上時,如圖2,試探究PB與AK的位置關系以及PB、PK、AK三者的數(shù)量關系(直接寫出無需證明);
(2)延伸拓展
當點P落在正方形外,如圖1,以上兩個結(jié)論是否仍然成立?如果成立請給出證明,如果不成立請說明你的理由;
(3)應用推廣
如圖3,在等腰Rt△ABD中,其中∠BAD=90°,腰長為3,M、N分別為AD邊與BD邊的中點,K為線段DN中點,F(xiàn)為AD邊上靠近于D的三等分點.連接KF并延長與直線MN交于點P,連接PB分別與AD、AK交于點E、G.試求四邊形EFKG的周長及面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在平面直角坐標系xOy中,△ABC的三個頂點坐標分別為A(﹣2,4),B(﹣2,1),C(﹣5,2).
(1)畫出△ABC關于x軸對稱的△A1B1C1;
(2)將△A1B1C1的三個頂點的橫坐標與縱坐同時乘以﹣2,得到對應的點A2 , B2 , C2 , 請畫出△A2B2C2;
(3)則S△A1B1C1:S△A2B2C2 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),拋物線y=﹣ x2+x+c與x軸交于A、B兩點,與y軸交于點C,其中點A的坐標為(﹣2,0).
(1)求此拋物線的解析式;
(2)①若點D是第一象限內(nèi)拋物線上的一個動點,過點D作DE⊥x軸于E,連接CD,以OE為直徑作⊙M,如圖(2),試求當CD與⊙M相切時D點的坐標;
②點F是x軸上的動點,在拋物線上是否存在一點G,使A、C、G、F四點為頂點的四邊形是平行四邊形?若存在,求出點G的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在下列敘述中:
①一組對邊相等的四邊形是平行四邊形;
②函數(shù)y= 中,y隨x的增大而減小;
③有一組鄰邊相等的平行四邊形是菱形;
④有不可能事件A發(fā)生的概率為0.0001.
正確的敘述有( )
A.0個
B.1個
C.2個
D.3個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E、F分別是BC、CD的中點,DE交AF于點M,點N為DE的中點.
(1)若AB=4,求△DNF的周長及sin∠DAF的值;
(2)求證:2ADNF=DEDM.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是△ABC的中線,E,F分別是AD和AD延長線上的點,且DE=DF,連接BF、CE,且∠FBD=35°,∠BDF=75°,下列說法:①△BDF≌CDE;②ABD和△ACD面積相等;③BF∥CE;④∠DEC=70°,其中正確的有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,⊙M過原點O,與x軸交于A(4,0),與y軸交于B(0,3),點C為劣弧AO的中點,連接AC并延長到D,使DC=4CA,連接BD.
(1)求⊙M的半徑;
(2)證明:BD為⊙M的切線;
(3)在直線MC上找一點P,使|DP﹣AP|最大.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知任意三角形的三邊長,如何求三角形面積?
古希臘的幾何學家海倫解決了這個問題,在他的著作《度量論》一書中給出了計算公式﹣﹣海倫公式S= (其中a,b,c是三角形的三邊長,p= ,S為三角形的面積),并給出了證明
例如:在△ABC中,a=3,b=4,c=5,那么它的面積可以這樣計算:
∵a=3,b=4,c=5
∴p= =6
∴S= = =6
事實上,對于已知三角形的三邊長求三角形面積的問題,還可用我國南宋時期數(shù)學家秦九韶提出的秦九韶公式等方法解決.
如圖,在△ABC中,BC=5,AC=6,AB=9
(1)用海倫公式求△ABC的面積;
(2)求△ABC的內(nèi)切圓半徑r.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com