(2006•防城港)麗麗買了一張30元的租碟卡,每租一張碟后剩下的余額如下表,若麗麗租碟25張,則卡中還剩下( )
租碟數(shù)(張)卡中余額(元)
130-0.8
230-1.6
330-2.4

A.5元
B.10元
C.20元
D.14元
【答案】分析:由表中的數(shù)據(jù)可知每租一張碟,少0.8元,所以有30-25×0.8,解之即可.
解答:解:30-25×0.8=10元,
所以卡中還剩10元.
故選B.
點評:本題需仔細分析表中的數(shù)據(jù),找到規(guī)律.利用簡單的計算即可求出答案.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2006•防城港)拋物線y=-x2+2bx-(2b-1)(b為常數(shù))與x軸相交于A(x1,0),B(x2,0)(x2>x1>0)兩點,設OA•OB=3(O為坐標系原點).
(1)求拋物線的解析式;
(2)設拋物線的頂點為C,拋物線的對稱軸交x軸于點D,求證:點D是△ABC的外心;
(3)在拋物線上是否存在點P,使S△ABP=1?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年廣西玉林市中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•防城港)拋物線y=-x2+2bx-(2b-1)(b為常數(shù))與x軸相交于A(x1,0),B(x2,0)(x2>x1>0)兩點,設OA•OB=3(O為坐標系原點).
(1)求拋物線的解析式;
(2)設拋物線的頂點為C,拋物線的對稱軸交x軸于點D,求證:點D是△ABC的外心;
(3)在拋物線上是否存在點P,使S△ABP=1?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年廣西玉林市中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2006•防城港)在矩形ABCD中,AB=4,BC=2,以A為坐標原點,AB所在的直線為x軸,建立直角坐標系.然后將矩形ABCD繞點A逆時針旋轉(zhuǎn),使點B落在y軸的E點上,則C和D點依次落在第二象限的F點上和x軸的G點上(如圖).
(1)求經(jīng)過B,E,G三點的二次函數(shù)解析式;
(2)設直線EF與(1)的二次函數(shù)圖象相交于另一點H,試求四邊形EGBH的周長.
(3)設P為(1)的二次函數(shù)圖象上的一點,BP∥EG,求P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年廣西防城港市中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•防城港)拋物線y=-x2+2bx-(2b-1)(b為常數(shù))與x軸相交于A(x1,0),B(x2,0)(x2>x1>0)兩點,設OA•OB=3(O為坐標系原點).
(1)求拋物線的解析式;
(2)設拋物線的頂點為C,拋物線的對稱軸交x軸于點D,求證:點D是△ABC的外心;
(3)在拋物線上是否存在點P,使S△ABP=1?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年廣西防城港市中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2006•防城港)在矩形ABCD中,AB=4,BC=2,以A為坐標原點,AB所在的直線為x軸,建立直角坐標系.然后將矩形ABCD繞點A逆時針旋轉(zhuǎn),使點B落在y軸的E點上,則C和D點依次落在第二象限的F點上和x軸的G點上(如圖).
(1)求經(jīng)過B,E,G三點的二次函數(shù)解析式;
(2)設直線EF與(1)的二次函數(shù)圖象相交于另一點H,試求四邊形EGBH的周長.
(3)設P為(1)的二次函數(shù)圖象上的一點,BP∥EG,求P點的坐標.

查看答案和解析>>

同步練習冊答案