【題目】如圖,將△ABC沿BC方向平移3cm得到△DEF,若四邊形ABFD的周長為22cm,則△ABC的周長為cm.

【答案】16
【解析】解:∵△ABC沿BC方向平移3cm得到△DEF,

∴AC=DF,AD=CF=3,

∵四邊形ABFD的周長是22cm,

即AB+BC+CF+DF+AD=22,

∴AB+BC+AC+3+3=22,

即AB+BC+AC=16,

∴△ABC的周長為16cm.

所以答案是:16.

【考點精析】根據(jù)題目的已知條件,利用平移的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握①經(jīng)過平移之后的圖形與原來的圖形的對應線段平行(或在同一直線上)且相等,對應角相等,圖形的形狀與大小都沒有發(fā)生變化;②經(jīng)過平移后,對應點所連的線段平行(或在同一直線上)且相等.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某中學為了讓學生的跳遠在中考體育測試中取得滿意的成績,在鍛煉一個月后,學校對九年級一班的45名學生進行測試,成績?nèi)缦卤恚?/span>

跳遠成績(cm)

160

170

180

190

200

220

人數(shù)

3

9

6

9

15

3

這些運動員跳遠成績的中位數(shù)和眾數(shù)分別是( )
A.190,200
B.9,9
C.15,9
D.185,200

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知⊙O是△ABC的外接圓,AD是⊙O的直徑,且BD=BC,延長AD到E,且有∠EBD=∠CAB.

(1)求證:BE是⊙O的切線;

(2)若BC=,AC=5,求圓的直徑AD及切線BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】沿河岸有A,B,C三個港口,甲、乙兩船同時分別從A,B港口出發(fā),勻速駛向C港,最終到達C港.設(shè)甲、乙兩船行駛x(h)后,與B港的距離分別為y1、y2(km),y1、y2與x的函數(shù)關(guān)系如圖所示.考察下列結(jié)論:
①甲船的速度是25km/h;
②從A港到C港全程為120km;
③甲船比乙船早1.5小時到達終點;
④圖中P點為兩者相遇的交點,P點的坐標為( );
⑤如果兩船相距小于10km能夠相互望見,那么,甲、乙兩船可以相互望見時,x的取值范圍是 <x<2.
其中正確的結(jié)論有

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】快、慢兩車分別從相距180千米的甲、乙兩地同時出發(fā),沿同一路線勻速行駛,相向而行,快車到達乙地停留一段時間后,按原路原速返回甲地.慢車到達甲地比快車到達甲地早小時,慢車速度是快車速度的一半,快、慢兩車到達甲地后停止行駛,兩車距各自出發(fā)地的路程y(千米)與所用時間x(小時)的函數(shù)圖象如圖所示,請結(jié)合圖象信息解答下列問題:

(1)請直接寫出快、慢兩車的速度;

(2)求快車返回過程中y(千米)與x(小時)的函數(shù)關(guān)系式;

(3)兩車出發(fā)后經(jīng)過多長時間相距90千米的路程?直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=﹣ x+1的圖象與x軸、y軸分別交于點A、B,以AB為邊在第一象限內(nèi)做等邊△ABC

(1)求△ABC的面積和點C的坐標;
(2)如果在第二象限內(nèi)有一點P(a, ),試用含a的代數(shù)式表示四邊形ABPO的面積.
(3)在x軸上是否存在點M,使△MAB為等腰三角形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,則三個結(jié)論:①AS=AR;②QP∥AR;③△BPR≌△QPS中(
A.全部正確
B.僅①和③正確
C.僅①正確
D.僅①和②正確

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在x軸的上方,直角∠BOA繞原點O按順時針方向旋轉(zhuǎn),若∠BOA的兩邊分別與函數(shù)的圖象交于B、A兩點,則∠OAB的大小的變化趨勢為(

A.逐漸變小 B.逐漸變大 C.時大時小 D.保持不變

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法不正確的是( )

A. 選舉中,人們通常最關(guān)心的數(shù)據(jù)是眾數(shù)

B. 數(shù)據(jù)64、2、2、1的平均數(shù)是3

C. 數(shù)據(jù)3、5、4、1、-2的中位數(shù)是3

D. “打開電視機,中央一套正在播廣告是必然事件

查看答案和解析>>

同步練習冊答案