下列結(jié)論中:①最小的自然數(shù)是0;②最大的負(fù)整數(shù)是-1;③絕對值最小的數(shù)是0;④平方等于它本身的數(shù)只有1,其中正確的個數(shù)是( 。
分析:根據(jù)0是自然數(shù),整數(shù)、絕對值、平方根的知識,結(jié)合各項的說法可得出答案.
解答:解:①最小的自然數(shù)是0,故正確;
②最大的負(fù)整數(shù)是-1,故正確;
③絕對值最小的數(shù)是0,故正確;
④平方等于它本身的數(shù)有0和1,故錯誤.
綜上可得①②③正確,共三個.
故選C.
點評:此題考查了有理數(shù)、整數(shù)、絕對值的知識,綜合考察的知識點較多,難度一般,解答本題的關(guān)鍵是熟練一些基本常識.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

精英家教網(wǎng)閱讀以下材料:
對于三個數(shù)a、b、c,用M(a,b,c)表示這三個數(shù)的平均數(shù),用min(a,b,c)表示這三個數(shù)中最小的數(shù).例如:M{-1,2,3}=
-1+2+3
3
=
4
3
;min{-1,2,3}=-1;min{-1,2,a}=a(a≤-1);-1(a>-1)
解決下列問題:
(1)填空:min{sin30°,cos45°,tan30°}=
 
,如果min{2,2x+2,4-2x}=2,則x的取值范圍為
 
≤x≤
 
;
(2)①如果M{2,x+1,2x}=min{2,x+1,2x},求x.
②根據(jù)①,你發(fā)現(xiàn)了結(jié)論“如果M{a,b,c}=min{a,b,c},那么
 
(填a,b,c的大小關(guān)系)”,
證明你發(fā)現(xiàn)的結(jié)論.
③運用②的結(jié)論,填空:若M{2x+y+2,x+2y,2x-y}=min{2x+y+2,x+2y,2x-y},則x+y=
 
;
(3)在同一直角坐標(biāo)系中作出函數(shù)y=x+1,y=(x+1)2,y=2-x的圖象(不需列表描點),通過觀察圖象,填空:min{x+1,(x-1)2,2-x}的最大值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

11、下列結(jié)論中正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寶山區(qū)一模)在平面直角坐標(biāo)系中,拋物線過原點O,且與x軸交于另一點A(A在O右側(cè)),頂點為B.艾思軻同學(xué)用一把寬3cm的矩形直尺對拋物線進行如下測量:(1)量得OA=3cm,(2)當(dāng)把直尺的左邊與拋物線的對稱抽重合,使得直尺左下端點與拋物線的頂點重合時(如圖1),測得拋物線與直尺右邊的交點C的刻度讀數(shù)為4.5cm.
艾思軻同學(xué)將A的坐標(biāo)記作(3,0),然后利用上述結(jié)論嘗試完成下列各題:
(1)寫出拋物線的對稱軸;
(2)求出該拋物線的解析式;
(3)探究拋物線的對稱軸上是否存在使△ACD周長最小的點D;
(4)然后又將圖中的直尺(足夠長)沿水平方向向右平移到點A的右邊(如圖2),直尺的兩邊交x軸于點H,G,交拋物線于E,F(xiàn),探究梯形EFGH的面積S與線段EF的長度是否存在函數(shù)關(guān)系.
同學(xué):如上述(3)(4)結(jié)論存在,請你幫艾思軻同學(xué)一起完成,如上述(3)(4)結(jié)論不存在,請你告訴艾思軻同學(xué)結(jié)論不存在的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列結(jié)論中正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列結(jié)論中正確的是( 。

查看答案和解析>>

同步練習(xí)冊答案