如圖,正方形ABCD、正方形CEFG、正方形DMNG各自的一邊圍成了△DCG且∠DCG=Rt∠,正方形ABCD、正方形CEFG的面積分別為4cm2、12cm2,則正方形DMNG的面積為
16
16
cm2
分析:由條件可以知道△GDC是直角三角形,且∠DCG=90°,由勾股定理就可以得出DG2=DC2+CG2,根據(jù)正方形ABCD、正方形CEFG的面積分別為4cm2、12cm2,就可以DG2的值,從而可以求出結(jié)論.
解答:解:∵△GDC是直角三角形,且∠DCG=90°,
∴DG2=DC2+CG2
∵正方形ABCD、正方形CEFG的面積分別為4cm2、12cm2,
∴DC2=4,CG2=12,
∴DC2+CG2=16,
∴DG2=16.
∵S正方形DMNG=DG2,
∴S正方形DMNG=16.
故答案為:16
點(diǎn)評(píng):本題考查了正方形的性質(zhì)和勾股定理的運(yùn)用,是一道比較簡(jiǎn)單的解答題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點(diǎn),且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點(diǎn)在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,正方形ABCD的邊長(zhǎng)為4,將一個(gè)足夠大的直角三角板的直角頂點(diǎn)放于點(diǎn)A處,該三角板的兩條直角邊與CD交于點(diǎn)F,與CB延長(zhǎng)線交于點(diǎn)E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長(zhǎng).
(2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案