【題目】小明在數(shù)學(xué)課中學(xué)習(xí)了《解直角三角形》的內(nèi)容后,雙休日組織教學(xué)興趣小組的小伙伴進(jìn)行實(shí)地測量.如圖,他們在坡度是i=1:2.5的斜坡DE的D處,測得樓頂?shù)囊苿?dòng)通訊基站鐵塔的頂部A和樓頂B的仰角分別是60°、45°,斜坡高EF=2米,CE=13米,CH=2米.大家根據(jù)所學(xué)知識很快計(jì)算出了鐵塔高AM.親愛的同學(xué)們,相信你也能計(jì)算出鐵塔AM的高度!請你寫出解答過程.(數(shù)據(jù) ≈1.41, ≈1.73供選用,結(jié)果保留整數(shù))
【答案】17
【解析】試題分析:
由坡度結(jié)合EF=2可得FD=5,結(jié)合CE=13,CH=2可得GD=18,DN=20,從而在Rt△DBG中可得BG=18,在Rt△AND中可解得AN=,最后由AM=AN-MN=AM-BG即可求得AM的長.
試題解析:
∵斜坡的坡度是,EF=2,
∴FD=2.5EF=2.5×2=5,
∵CE=13,CE=GF,
∴GD=GF+FD=CE+FD=13+5=18,
在Rt△DBG中,∠GDB=45°,
∴BG=GD=18,
在Rt△DAN中,∠NDA=60°,
∴ND=NG+GD=CH+GD=2+18=20,
AN=NDtan60°=20×=20,
∴AM=AN﹣MN=AN﹣BG= (米).
答:鐵塔高AM約17米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著氣溫的升高,空調(diào)的需求量大增,某家電超市對每臺進(jìn)價(jià)分別為元、元的、兩種型號的空調(diào),近兩周的銷售情況統(tǒng)計(jì)如下:
(1)求、兩種型號空調(diào)的售價(jià);
(2)若該家電超市準(zhǔn)備與不多于元的資金,采購這兩種型號的空調(diào)臺,求種型號的空調(diào)最多能采購多少臺?
(3)在(2)的條件下,該家電超市售完這臺空調(diào)能否山實(shí)現(xiàn)利潤不低于元的目標(biāo)?若能,請給出采購方案.若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,點(diǎn)是的中點(diǎn),延長,交于點(diǎn),連結(jié),.
(1)求證:四邊形是平行四邊形;
(2)當(dāng)平分時(shí),寫出與的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以的頂點(diǎn)O圓心,適當(dāng)長為半徑畫弧,交OA于點(diǎn)C,交OB于點(diǎn)D.再分別以點(diǎn)C、D為圓心,大于的長為半徑畫弧,兩弧在內(nèi)部交于點(diǎn)E.作射線OE,連接CD.則下列說法錯(cuò)誤的是( )
A. 射線OE是的平分線B. 是等腰三角形
C. 直線OE垂直平分線段CDD. O、E兩點(diǎn)關(guān)于CD所在直線對稱
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測量某建筑物BC的高度,小明先在地面上用測角儀自A處測得建筑物頂部的仰角是30°,然后在水平地而上向建筑物前進(jìn)了50m到達(dá)D處,此時(shí)遇到一斜坡,坡度i=1: ,沿著斜坡前進(jìn)20米到達(dá)E處測得建筑物頂部的仰角是45°,(坡度i=1: 是指坡面的鉛直高度FE與水平寬度DE的比).請你計(jì)算出該建筑物BC的高度.(取=1.732,結(jié)果精確到0.1m).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ABC(如圖).
(1)利用尺規(guī)按下列要求作圖(保留作圖痕跡,不寫作法):
①作∠BAC的平分線AD,交BC于點(diǎn)D;
②作AB邊的垂直平分線EF,分別交AD,AB于點(diǎn)E,F.
(2)連接BE,若∠ABC=60°,∠C=40°,求∠AEB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ABC(如圖).
(1)利用尺規(guī)按下列要求作圖(保留作圖痕跡,不寫作法):
①作∠BAC的平分線AD,交BC于點(diǎn)D;
②作AB邊的垂直平分線EF,分別交AD,AB于點(diǎn)E,F.
(2)連接BE,若∠ABC=60°,∠C=40°,求∠AEB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,對角線AC、BD相交于O,EF過點(diǎn)O,且AF⊥BC.
(1)求證:△BFO≌△DEO;
(2)若EF平分∠AEC,試判斷四邊形AFCE的形狀,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校組織了“熱愛憲法,捍衛(wèi)憲法”的知識競賽,賽后發(fā)現(xiàn)所有學(xué)生的成績(總分100分)均不低于50分,為了解本次競賽的成績分布情況,隨機(jī)抽取若干名學(xué)生的成績作為樣本進(jìn)行整理,并繪制了不完整的統(tǒng)計(jì)圖表,請你根據(jù)統(tǒng)計(jì)圖表解答下列問題.
學(xué)校若干名學(xué)生成績分布統(tǒng)計(jì)表
分?jǐn)?shù)段(成績?yōu)?/span>x分) | 頻數(shù) | 頻率 |
50≤x<60 | 16 | 0.08 |
60≤x<70 | a | 0.31 |
70≤x<80 | 72 | 0.36 |
80≤x<90 | c | d |
90≤x≤100 | 12 | b |
(1)此次抽樣調(diào)查的樣本容量是 ;
(2)寫出表中的a= ,b= ,c= ;
(3)補(bǔ)全學(xué)生成績分布直方圖;
(4)比賽按照分?jǐn)?shù)由高到低共設(shè)置一、二、三等獎(jiǎng),若有25%的參賽學(xué)生能獲得一等獎(jiǎng),則一等獎(jiǎng)的分?jǐn)?shù)線是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com